login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A282811
Numbers n such that n and n + 1 are both composite and the reverse of n and n + 1 are both prime.
1
34, 91, 118, 124, 133, 145, 300, 361, 364, 370, 376, 391, 721, 730, 745, 754, 763, 775, 778, 784, 790, 904, 916, 931, 943, 973, 994, 1003, 1015, 1075, 1081, 1084, 1099, 1105, 1126, 1138, 1189, 1204, 1255, 1261, 1324, 1348, 1351, 1393, 1444, 1477
OFFSET
1,1
COMMENTS
Related to a palindrome, a semordnilap is a word that when reversed results in a new, different, valid word. For example the semordnilap of the word "desserts" is the word "stressed". Applying this principle to numbers, any number is either a palindrome or a semordnilap. This sequence deals with adjacent composite numbers whose semordnilap numbers are prime.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
EXAMPLE
For n = 2 * 17 = 34, which reverses to 43, a prime, we have n + 1 = 5 * 7 = 35, which reverses to 53, also a prime.
MATHEMATICA
searchMax = 2000; Select[Complement[Range[searchMax], Prime[Range[PrimePi[searchMax]]]], Not[PrimeQ[# + 1]] && PrimeQ[FromDigits[Reverse[IntegerDigits[#]]]] && PrimeQ[FromDigits[Reverse[IntegerDigits[# + 1]]]] &] (* Alonso del Arte, Feb 23 2017 *)
Select[Partition[Range[1500], 2, 1], AllTrue[#, CompositeQ] && AllTrue[ IntegerReverse[#], PrimeQ]&][[All, 1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 10 2017 *)
PROG
(PARI) rev(n)=fromdigits(Vecrev(digits(n)))
is(n)=isprime(rev(n)) && isprime(rev(n+1)) && !isprime(n) && !isprime(n+1) \\ Charles R Greathouse IV, Feb 23 2017
CROSSREFS
Sequence in context: A140602 A067977 A183311 * A185460 A260467 A202421
KEYWORD
nonn,base
AUTHOR
Philip Mizzi, Feb 22 2017
STATUS
approved