login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A281906 Expansion of Sum_{p prime, i>=1} p^i*x^(p^i)/(1 - x^(p^i)) / Product_{j>=1} (1 - x^j). 0
0, 2, 5, 13, 23, 41, 69, 119, 185, 283, 425, 625, 903, 1285, 1799, 2517, 3450, 4699, 6340, 8490, 11264, 14870, 19485, 25390, 32897, 42395, 54372, 69408, 88210, 111612, 140717, 176738, 221135, 275776, 342790, 424743, 524765, 646420, 794109, 972967, 1189105, 1449577, 1763097, 2139394, 2590349, 3129633, 3773546, 4540645 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Total sum of prime power parts (1 excluded) in all partitions of n.

Convolution of the sequences A000041 and A023889.

LINKS

Table of n, a(n) for n=1..48.

Index entries for related partition-counting sequences

FORMULA

G.f.: Sum_{p prime, i>=1} p^i*x^(p^i)/(1 - x^(p^i)) / Product_{j>=1} (1 - x^j).

EXAMPLE

a(5) = 23 because we have [5], [4, 1], [3, 2], [3, 1, 1], [2, 2, 1], [2, 1, 1, 1], [1, 1, 1, 1, 1] and 5 + 4 + 3 + 2 + 3 + 2 + 2 + 2 = 23.

MATHEMATICA

nmax = 48; Rest[CoefficientList[Series[Sum[Floor[1/PrimeNu[i]] i x^i/(1 - x^i), {i, 2, nmax}]/Product[1 - x^j, {j, 1, nmax}], {x, 0, nmax}], x]]

CROSSREFS

Cf. A000041, A023889, A066186, A073118, A246655.

Sequence in context: A102719 A075470 A049779 * A256491 A106009 A194552

Adjacent sequences:  A281903 A281904 A281905 * A281907 A281908 A281909

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, Feb 01 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 25 08:37 EDT 2020. Contains 334587 sequences. (Running on oeis4.)