The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A049779 a(n) = Sum_{k=1..floor(n/2)} T(n, 2k), array T as in A049777. 3
 2, 5, 13, 23, 41, 62, 94, 130, 180, 235, 307, 385, 483, 588, 716, 852, 1014, 1185, 1385, 1595, 1837, 2090, 2378, 2678, 3016, 3367, 3759, 4165, 4615, 5080, 5592, 6120, 6698, 7293, 7941, 8607, 9329, 10070, 10870, 11690, 12572, 13475, 14443, 15433 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,1 COMMENTS a(n) is coefficient of x^2 in -Product_{j=1..n} (1 + (-1)^j*j*x). - Robert Israel, Jun 08 2015 LINKS Vincenzo Librandi, Table of n, a(n) for n = 2..1000 M. Benoumhani, M. Kolli, Finite topologies and partitions, JIS 13 (2010) # 10.3.5, Lemma 6 2nd line. Index entries for linear recurrences with constant coefficients, signature (2,1,-4,1,2,-1). FORMULA G.f.: x^2*(2+x+x^2)/((1-x)^4*(1+x)^2). Pairwise sums of A023856. - Ralf Stephan, May 06 2004 a(n) = Sum_{k=1..n} k*floor(k/2). - Vladeta Jovovic, Apr 29 2006 a(n) = (8*n^3 + 6*n^2 - 2*n - 3 + 3*(-1)^n *(2*n+1))/48. - Robert Israel, Jun 08 2015 a(n) = (n*(n+1)*(4*n-1) + 6*(-1)^n*floor((n+1)/2))/24. - Néstor Jofré, Apr 24 2017 E.g.f.: ( (8*x^3 + 30*x^2 + 12*x - 3)*exp(x) + 3*(1-2*x)*exp(-x) )/48. - G. C. Greubel, Dec 12 2019 MAPLE seq( (8*n^3 +6*n^2 -2*n -3 +3*(-1)^n*(2*n+1))/48, n=2..50); # G. C. Greubel, Dec 12 2019 MATHEMATICA T[m_, n_]:=(m+n)(m-n+1)/2; Table[Sum[T[n, 2k], {k, Floor[n/2]}], {n, 2, 50}] (* Indranil Ghosh, Apr 24 2017 *) LinearRecurrence[{2, 1, -4, 1, 2, -1}, {2, 5, 13, 23, 41, 62}, 50] (* Vincenzo Librandi, Apr 25 2017 *) PROG (PARI) a(n)=(4*n^3 + 3*n^2 + 2*n - if(n%2, 6*n+3))/24 \\ Charles R Greathouse IV, Jun 08 2015 (MATLAB) a = @(n) 1/4*(n*(n+1)*(4*n-1)/6 + (-1)^n*floor((n+1)/2)); % Néstor Jofré, Apr 24 2017 (Magma) [n^3/6+n^2/8-n/24-1/16+(-1)^n*(n/8+1/16): n in [2..50]]; // Vincenzo Librandi, Apr 25 2017 (Sage) [(8*n^3 +6*n^2 -2*n -3 +3*(-1)^n*(2*n+1))/48 for n in (2..50)] # G. C. Greubel, Dec 12 2019 (GAP) List([2..50], n-> (8*n^3 +6*n^2 -2*n -3 +3*(-1)^n*(2*n+1))/48); # G. C. Greubel, Dec 12 2019 CROSSREFS Sequence in context: A046696 A102719 A075470 * A281906 A256491 A106009 Adjacent sequences: A049776 A049777 A049778 * A049780 A049781 A049782 KEYWORD nonn,easy AUTHOR EXTENSIONS More terms from Ralf Stephan, May 06 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 29 13:51 EST 2022. Contains 358430 sequences. (Running on oeis4.)