login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A281333 a(n) = 1 + floor(n/2) + floor(n^2/3). 5
1, 1, 3, 5, 8, 11, 16, 20, 26, 32, 39, 46, 55, 63, 73, 83, 94, 105, 118, 130, 144, 158, 173, 188, 205, 221, 239, 257, 276, 295, 316, 336, 358, 380, 403, 426, 451, 475, 501, 527, 554, 581, 610, 638, 668, 698, 729, 760, 793, 825, 859, 893, 928, 963, 1000, 1036, 1074, 1112, 1151, 1190 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Bruno Berselli, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (1,1,0,-1,-1,1).

FORMULA

G.f.: (1 + x^2 + x^3 + x^4)/((1 + x)*(1 + x + x^2)*(1 - x)^3).

a(n) = a(n-1) + a(n-2) - a(n-4) - a(n-5) + a(n-6).

a(n) = 1 + floor(n/2 + n^2/3).

a(n) = (12*n^2 + 18*n + 4*(-1)^(2*n/3) + 4*(-1)^(-2*n/3) + 9*(-1)^n + 19)/36.

a(n) - n = a(-n).

a(6*k+r) = 12*k^2 + (4*r+3)*k + a(r), where 0 <= r <= 5. Particular cases:

a(6*k) = A244805(k+1), a(6*k+1) = A033577(k).

a(n+2) -  a(n) =   A004773(n+2).

a(n+3) -  a(n) =   A014601(n+2).

a(n+4) -  a(n) =   A047480(n+3).

a(n) - a(-n+3) = 2*A001651(n-1).

a(n) + a(-n+3) = 2*A097922(n-1).

MAPLE

A281333:=n->1 + floor(n/2) + floor(n^2/3): seq(A281333(n), n=0..100); # Wesley Ivan Hurt, Feb 09 2017

MATHEMATICA

Table[1 + Floor[n/2] + Floor[n^2/3], {n, 0, 60}]

PROG

(PARI) vector(60, n, n--; 1+floor(n/2)+floor(n^2/3))

(Python) [1+int(n/2)+int(n**2/3) for n in xrange(60)]

(Sage) [1+floor(n/2)+floor(n^2/3) for n in xrange(60)]

(Maxima) makelist(1+floor(n/2)+floor(n^2/3), n, 0, 60);

(MAGMA) [1 + n div 2 + n^2 div 3: n in [0..60]];

CROSSREFS

Subsequences: A033577, A244805 (numbers of the form 1 + k/2 + k^2/3), A212978 (second bisection).

Cf. A236771: n + floor(n/2) + floor(n^2/3).

Cf. A008619: 1 + floor(n/2); A087483: 1 + floor(n^2/3).

Sequence in context: A014688 A167136 A099836 * A244031 A194803 A284835

Adjacent sequences:  A281330 A281331 A281332 * A281334 A281335 A281336

KEYWORD

nonn,easy

AUTHOR

Bruno Berselli, Jan 20 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 12 06:05 EST 2017. Contains 295937 sequences.