The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A280761 Solutions y_n to the negative Pell equation y^2 = 72*x^2 - 8. 2
 8, 280, 9512, 323128, 10976840, 372889432, 12667263848, 430314081400, 14618011503752, 496582077046168, 16869172608065960, 573055286597196472, 19467010571696614088, 661305304151087682520, 22464913330565284591592, 763145747935068588431608 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Although this is a list, it has offset zero because one of the references numbered the solutions starting at 0. LINKS Seiichi Manyama, Table of n, a(n) for n = 0..652 S. Vidhyalakshmi, V. Krithika, K. Agalya, On The Negative Pell Equation  y^2 = 72*x^2 - 8, International Journal of Emerging Technologies in Engineering Research (IJETER), Volume 4, Issue 2, February (2016). Index entries for linear recurrences with constant coefficients, signature (34,-1). FORMULA G.f.: 8*(1 + x)/(1 - 34*x + x^2). - Ilya Gutkovskiy, Jan 17 2017 a(n) = 34*a(n-1) - a(n-2), a(0)=8, a(1)=280. - Seiichi Manyama, Jan 17 2017 a(n) = (17+12*sqrt(2))^(-n)*(-4-3*sqrt(2) + (-4+3*sqrt(2))*(17+12*sqrt(2))^(2*n)) for n>0. - Colin Barker, Jan 17 2017 MATHEMATICA LinearRecurrence[{34, -1}, {8, 280}, 20] (* Vincenzo Librandi, Jan 18 2017 *) PROG (PARI) a(n)=([0, 1; -1, 34]^n*[-8; 8])[1, 1] \\ Charles R Greathouse IV, Jan 17 2017 (MAGMA) I:=[8, 280]; [n le 2 select I[n] else 34*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Jan 18 2017 CROSSREFS For the x_n values see A077420. Sequence in context: A201188 A296411 A281763 * A247215 A079929 A226415 Adjacent sequences:  A280758 A280759 A280760 * A280762 A280763 A280764 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Jan 16 2017 EXTENSIONS More terms from Ilya Gutkovskiy, Jan 17 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 18 16:51 EDT 2021. Contains 343089 sequences. (Running on oeis4.)