login
A079929
a(n)=(3*n+1)!/(n!*3^n).
1
1, 8, 280, 22400, 3203200, 717516800, 231757926400, 101973487616000, 58634755379200000, 42686101916057600000, 38374805622535782400000, 41751788517318931251200000, 54068566129928015970304000000
OFFSET
0,2
FORMULA
In Maple notation, hypergeometric generating function sum(a(n)*x^n/(n!)^2, n=0..infinity) = hypergeom([2/3, 4/3], [1], 9*x)
D-finite with recurrence a(n) -(3*n-1)*(3*n+1)*a(n-1)=0. - R. J. Mathar, Jul 27 2022
MAPLE
A079929 := proc(n)
(3*n+1)!/(n!*3^n) ;
end proc:
seq(A079929(n), n=0..30) ; # R. J. Mathar, Jul 27 2022
MATHEMATICA
Table[(3n+1)!/(n! 3^n), {n, 0, 30}] (* Harvey P. Dale, Jan 29 2021 *)
CROSSREFS
Sequence in context: A281763 A280761 A247215 * A226415 A226346 A217488
KEYWORD
nonn
AUTHOR
Karol A. Penson, Jan 16 2003
STATUS
approved