This site is supported by donations to The OEIS Foundation.

The October issue of the Notices of the Amer. Math. Soc. has an article about the OEIS.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A280129 Expansion of Product_{k>=2} (1 + x^(k^2)). 6
 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 2, 0, 0, 0, 2, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 2, 1, 0, 1, 3, 0, 0, 1, 1, 1, 0, 0, 1, 3, 0, 0, 2, 2, 0, 1, 2, 0, 1, 1, 2, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,26 COMMENTS Number of partitions of n into distinct squares > 1. LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 FORMULA G.f.: Product_{k>=2} (1 + x^(k^2)). From Vaclav Kotesovec, Dec 26 2016: (Start) a(n) = Sum_{k=0..n} (-1)^(n-k) * A033461(k). a(n) + a(n-1) = A033461(n). a(n) ~ A033461(n)/2. (End) EXAMPLE G.f. = 1 + x^4 + x^9 + x^13 + x^16 + x^20 + 2*x^25 + 2*x^29 + x^34 + x^36 + ... a(25) = 2 because we have [25] and [16, 9]. MATHEMATICA nmax = 115; CoefficientList[Series[Product[1 + x^k^2, {k, 2, nmax}], {x, 0, nmax}], x] PROG (PARI) {a(n) = if(n < 0, 0, polcoeff( prod(k=2, sqrtint(n), 1 + x^k^2 + x*O(x^n)), n))}; /* Michael Somos, Dec 26 2016 */ CROSSREFS Cf. A001156, A033461, A078134. Sequence in context: A226369 A263764 A070202 * A227344 A130207 A167688 Adjacent sequences:  A280126 A280127 A280128 * A280130 A280131 A280132 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Dec 26 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 25 01:17 EDT 2018. Contains 315360 sequences. (Running on oeis4.)