login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A279620
Limit of the sequence of words defined by w(1) = 1, w(2) = 1221, and w(n) = w(n-1) 2 w(n-2) 2 w(n-1) for n >= 2. Also the fixed point of the map 1 -> 122, 2 -> 12.
4
1, 2, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2
OFFSET
1,2
REFERENCES
Allombert, Bill, Nicolas Brisebarre, and Alain Lasjaunias. "On a two-valued sequence and related continued fractions in power series fields." The Ramanujan Journal 45.3 (2018): 859-871. See W in Theorem 2.
LINKS
Alain Lasjaunias and Jia-Yan Yao, Hyperquadratic continued fractions and automatic sequences, Finite Fields and Their Applications 40 (2016) 46-60. See Section 4.
Claude Lenormand, Deux transformations sur les mots, Preprint, 5 pages, Nov 17 2003. Apparently unpublished. This is a scanned copy of the version that the author sent to me in 2003. The sequence is on page 1, but there is a typo in the definition: g(1)=112 should be g(1)=122.
MATHEMATICA
Nest[Flatten[#]/.{1->{1, 2, 2}, 2->{1, 2}}&, {1}, 6]//Flatten (* Harvey P. Dale, Apr 21 2020 *)
CROSSREFS
Equals A189687(n) + 1.
For runs, see A318930.
For w(n) see A328991.
Sequence in context: A138702 A344339 A348364 * A278109 A216665 A301384
KEYWORD
nonn
AUTHOR
Jeffrey Shallit, Dec 21 2016
STATUS
approved