login
A279615
Partial sums of A279315.
0
0, 0, 1, 3, 7, 9, 10, 10, 16, 16, 17, 29, 30, 30, 42, 42, 43, 49, 50, 50, 52, 52, 53, 53, 53, 55, 55, 55, 56, 86, 87, 87, 87, 89, 89, 89, 90, 90, 92, 92, 93, 105, 106, 106, 108, 108, 109, 109, 109, 111, 111, 111, 115, 115, 115, 117, 117, 117, 118, 124, 125, 125, 125, 127, 127, 127, 128, 128, 130, 130, 131, 133, 134
OFFSET
1,4
FORMULA
a(n) = Sum_{h=1..n} (Sum_{i=3..h} A010051(i) * A010051(2h-i) * (pi(2h-i)-pi(i-1)) * (Product_{k=i..h} 1-abs(A010051(k)-A010051(2h-k)))).
MAPLE
with(numtheory): a:=n->add(add( (pi(i)-pi(i-1)) * (pi(2*h-i)-pi(2*h-i-1)) * (pi(2*h-i)-pi(i-1)) * (product(1-abs((pi(k)-pi(k-1))-(pi(2*h-k)-pi(2*h-k-1))), k=i..h)), i=3..h), h=1..n): seq(a(n), n=1..80);
CROSSREFS
Sequence in context: A179021 A096910 A182389 * A169968 A082768 A326911
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Dec 15 2016
STATUS
approved