login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A279315 Count the primes appearing in each interval [p,q] where (p,q) is a Goldbach partition of 2n such that all primes from p to q (inclusive) appear as a part in some Goldbach partition of p+q = 2n, and then add the results. 6
0, 0, 1, 2, 4, 2, 1, 0, 6, 0, 1, 12, 1, 0, 12, 0, 1, 6, 1, 0, 2, 0, 1, 0, 0, 2, 0, 0, 1, 30, 1, 0, 0, 2, 0, 0, 1, 0, 2, 0, 1, 12, 1, 0, 2, 0, 1, 0, 0, 2, 0, 0, 4, 0, 0, 2, 0, 0, 1, 6, 1, 0, 0, 2, 0, 0, 1, 0, 2, 0, 1, 2, 1, 0, 0, 2, 0, 0, 1, 0, 6, 0, 1, 0, 0, 2, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,4
LINKS
Eric Weisstein's World of Mathematics, Goldbach Partition
FORMULA
a(n) = Sum_{i=3..n} (c(i) * c(2n-i) * (pi(2*n-i)-pi(i-1)) * (Product_{k=i..n} (1-abs(c(k)-c(2n-k)))), where pi is the prime counting function (A000720), and c is the prime characteristic (A010051).
From Wesley Ivan Hurt, Dec 17 2016: (Start)
a(n) = A010051(n)*A278700(n)^2+(1-A010051(n))*A278700(n)*(A278700(n)+1).
a(n) <= A279536(n). (End)
MAPLE
with(numtheory): A279315:=n->add( (pi(i)-pi(i-1)) * (pi(2*n-i)-pi(2*n-i-1)) * (pi(2*n-i)-pi(i-1)) * (product(1-abs((pi(k)-pi(k-1))-(pi(2*n-k)-pi(2*n-k-1))), k=i..n)), i=3..n): seq(A279315(n), n=1..100);
MATHEMATICA
f[n_] := Sum[ Boole[PrimeQ[i]] Boole[PrimeQ[ 2n -i]] (PrimePi[ 2n -i] - PrimePi[i -1]) Product[(1 - Abs[Boole[PrimeQ[k]] - Boole[PrimeQ[ 2n -k]]]), {k, i, n}], {i, 3, n}]; Array[f, 80] (* Robert G. Wilson v, Dec 15 2016 *)
CROSSREFS
Sequence in context: A273240 A201316 A105023 * A303293 A344637 A201558
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Dec 13 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 24 20:08 EDT 2024. Contains 371963 sequences. (Running on oeis4.)