The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A279412 Expansion of Sum_{k>=1} prime(k)*x^prime(k)/(1 + x^prime(k)) * Product_{k>=1} (1 + x^prime(k)). 0
 0, 2, 3, 0, 10, 0, 14, 8, 9, 20, 11, 24, 26, 28, 30, 48, 34, 72, 57, 80, 84, 88, 115, 120, 125, 156, 135, 168, 203, 180, 279, 224, 297, 306, 315, 396, 407, 418, 507, 480, 574, 630, 645, 748, 720, 828, 893, 960, 1029, 1150, 1122, 1300, 1378, 1458, 1650, 1624, 1824, 1856, 2065, 2220, 2379, 2480, 2646, 2816, 2925 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Sum of all parts of all partitions of n into distinct primes. LINKS Eric Weisstein's World of Mathematics, Prime Partition FORMULA G.f.: Sum_{k>=1} prime(k)*x^prime(k)/(1 + x^prime(k)) * Product_{k>=1} (1 + x^prime(k)). G.f.: x*f'(x), where f(x) = Product_{k>=1} (1 + x^prime(k)). a(n) = n*A000586(n). EXAMPLE a(12) = 24 because we have [7, 5], [7, 3, 2] and 2*12 = 24. MATHEMATICA nmax = 65; Rest[CoefficientList[Series[Sum[Prime[k] x^Prime[k]/(1 + x^Prime[k]), {k, 1, nmax}] Product[1 + x^Prime[k], {k, 1, nmax}], {x, 0, nmax}], x]] nmax = 65; Rest[CoefficientList[Series[x D[Product[1 + x^Prime[k], {k, 1, nmax}], x], {x, 0, nmax}], x]] CROSSREFS Cf. A000586, A024938, A066189, A276560. Sequence in context: A175315 A180186 A256294 * A012399 A012403 A012655 Adjacent sequences:  A279409 A279410 A279411 * A279413 A279414 A279415 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Apr 11 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 27 09:01 EST 2020. Contains 331293 sequences. (Running on oeis4.)