login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A279412 Expansion of Sum_{k>=1} prime(k)*x^prime(k)/(1 + x^prime(k)) * Product_{k>=1} (1 + x^prime(k)). 0
0, 2, 3, 0, 10, 0, 14, 8, 9, 20, 11, 24, 26, 28, 30, 48, 34, 72, 57, 80, 84, 88, 115, 120, 125, 156, 135, 168, 203, 180, 279, 224, 297, 306, 315, 396, 407, 418, 507, 480, 574, 630, 645, 748, 720, 828, 893, 960, 1029, 1150, 1122, 1300, 1378, 1458, 1650, 1624, 1824, 1856, 2065, 2220, 2379, 2480, 2646, 2816, 2925 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Sum of all parts of all partitions of n into distinct primes.

LINKS

Table of n, a(n) for n=1..65.

Eric Weisstein's World of Mathematics, Prime Partition

Index entries for related partition-counting sequences

FORMULA

G.f.: Sum_{k>=1} prime(k)*x^prime(k)/(1 + x^prime(k)) * Product_{k>=1} (1 + x^prime(k)).

G.f.: x*f'(x), where f(x) = Product_{k>=1} (1 + x^prime(k)).

a(n) = n*A000586(n).

EXAMPLE

a(12) = 24 because we have [7, 5], [7, 3, 2] and 2*12 = 24.

MATHEMATICA

nmax = 65; Rest[CoefficientList[Series[Sum[Prime[k] x^Prime[k]/(1 + x^Prime[k]), {k, 1, nmax}] Product[1 + x^Prime[k], {k, 1, nmax}], {x, 0, nmax}], x]]

nmax = 65; Rest[CoefficientList[Series[x D[Product[1 + x^Prime[k], {k, 1, nmax}], x], {x, 0, nmax}], x]]

CROSSREFS

Cf. A000586, A024938, A066189, A276560.

Sequence in context: A175315 A180186 A256294 * A012399 A012403 A012655

Adjacent sequences:  A279409 A279410 A279411 * A279413 A279414 A279415

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, Apr 11 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 27 09:01 EST 2020. Contains 331293 sequences. (Running on oeis4.)