login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000586 Number of partitions of n into distinct primes.
(Formerly M0022 N0004 N0039)
72
1, 0, 1, 1, 0, 2, 0, 2, 1, 1, 2, 1, 2, 2, 2, 2, 3, 2, 4, 3, 4, 4, 4, 5, 5, 5, 6, 5, 6, 7, 6, 9, 7, 9, 9, 9, 11, 11, 11, 13, 12, 14, 15, 15, 17, 16, 18, 19, 20, 21, 23, 22, 25, 26, 27, 30, 29, 32, 32, 35, 37, 39, 40, 42, 44, 45, 50, 50, 53, 55, 57, 61, 64, 67, 70, 71, 76, 78, 83, 87, 89, 93, 96 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,6

REFERENCES

H. Gupta, Certain averages connected with partitions. Res. Bull. Panjab Univ. no. 124 1957 427-430.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence in two entries, N0004 and N0039).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from T. D. Noe)

Edray Herber Goins and Talitha M. Washington, On the generalized climbing stairs problem, Ars Combin.  117  (2014), 183-190.  MR3243840 (Reviewed), arXiv:0909.5459 [math.CO], 2009.

H. Gupta, Partitions into distinct primes, Proc. Nat. Acad. Sci. India, 21 (1955), 185-187. [broken link]

BongJu Kim, Partition number identities which are true for all set of parts, arXiv:1803.08095 [math.CO], 2018.

M. V. N. Murthy, M. Brack, R. K. Bhaduri, On the asymptotic distinct prime partitions of integers, arXiv:1904.02776 [math.NT], Mar 22 2019.

K. F. Roth and G. Szekeres, Some asymptotic formulae in the theory of partitions, Quart. J. Math., Oxford Ser. (2) 5 (1954), 241-259.

FORMULA

G.f.: Product_{k>=1} (1+x^prime(k)).

a(n) = A184171(n) + A184172(n). - R. J. Mathar, Jan 10 2011

a(n) = Sum_{k=0..A024936(n)} A219180(n,k). - Alois P. Heinz, Nov 13 2012

log(a(n)) ~ Pi*sqrt(2*n/(3*log(n))) [Roth and Szekeres, 1954]. - Vaclav Kotesovec, Sep 13 2018

EXAMPLE

n=16 has a(16) = 3 partitions into distinct prime parts: 16 = 2+3+11 = 3+13 = 5+11.

MAPLE

b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,

      b(n, i-1)+`if`(ithprime(i)>n, 0, b(n-ithprime(i), i-1))))

    end:

a:= n-> b(n, numtheory[pi](n)):

seq(a(n), n=0..100);  # Alois P. Heinz, Nov 15 2012

MATHEMATICA

CoefficientList[Series[Product[(1+x^Prime[k]), {k, 24}], {x, 0, Prime[24]}], x]

b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, b[n, i-1] + If[Prime[i] > n, 0, b[n - Prime[i], i-1]]]]; a[n_] := b[n, PrimePi[n]]; Table[a[n], {n, 0, 100}] (* Jean-Fran├žois Alcover, Apr 09 2014, after Alois P. Heinz *)

nmax = 100; pmax = PrimePi[nmax]; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 0; poly[[3]] = 1; Do[p = Prime[k]; Do[poly[[j]] += poly[[j - p]], {j, nmax + 1, p + 1, -1}]; , {k, 2, pmax}]; poly (* Vaclav Kotesovec, Sep 20 2018 *)

PROG

(Haskell)

a000586 = p a000040_list where

   p _  0 = 1

   p (k:ks) m = if m < k then 0 else p ks (m - k) + p ks m

-- Reinhard Zumkeller, Aug 05 2012

(PARI) a(n, k=n)=if(n<1, !n, my(s); forprime(p=2, k, s+=a(n-p, p-1)); s) \\ Charles R Greathouse IV, Nov 20 2012

CROSSREFS

Cf. A000041, A070215, A000607 (parts may repeat), A112022, A000009, A046675, A319264, A319267.

Sequence in context: A191225 A223893 A112022 * A029399 A302172 A249338

Adjacent sequences:  A000583 A000584 A000585 * A000587 A000588 A000589

KEYWORD

nonn,nice,easy

AUTHOR

N. J. A. Sloane

EXTENSIONS

Entry revised by N. J. A. Sloane, Jun 10 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 1 15:30 EST 2020. Contains 338844 sequences. (Running on oeis4.)