login
A278216
Number of children that node n has in the tree defined by the edge relation A255131(child) = parent, "the least squares beanstalk".
8
4, 0, 0, 4, 0, 0, 1, 0, 3, 1, 0, 3, 0, 0, 0, 2, 2, 0, 2, 2, 0, 1, 0, 0, 4, 0, 0, 3, 0, 0, 2, 0, 2, 0, 0, 4, 0, 0, 1, 2, 1, 1, 0, 3, 0, 1, 0, 0, 3, 0, 1, 3, 0, 1, 1, 0, 3, 0, 0, 3, 0, 0, 0, 3, 1, 0, 2, 2, 0, 0, 1, 1, 2, 1, 1, 2, 0, 0, 1, 0, 3, 1, 0, 3, 0, 1, 0, 1, 3, 0, 1, 2, 0, 1, 0, 1, 2, 0, 0, 4, 0, 0, 2, 0, 2, 1, 0, 3, 1, 0, 0, 2, 1, 0, 1, 3, 0, 1, 0, 0, 4
OFFSET
0,1
LINKS
FORMULA
a(n) = Sum_{i=0..4} [A002828(n+i) = i]. (Here [ ] is the Iverson bracket, giving as its result 1 only if A002828(n+i) is i, otherwise zero.)
EXAMPLE
a(0) = 4 as 0 - A002828(0) = 0, 1 - A002828(1) = 0, 2 - A002828(2) = 0 and 3 - A002828(3) = 0. (But 4 - A002828(4) = 3.) Note that 0 is the only number which is its own child as 0 - A002828(0) = 0.
PROG
(Scheme) (define (A278216 n) (let loop ((s 0) (k (+ 4 n))) (if (< k n) s (loop (+ s (if (= n (A255131 k)) 1 0)) (- k 1)))))
CROSSREFS
Cf. A278490 (positions of zeros), A278489 (positions of nonzeros), A278491 (positions of 4's).
Sequence in context: A306770 A308278 A308277 * A036480 A035639 A284689
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 25 2016
STATUS
approved