login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A278094
T(n,k)=Number of nXk 0..1 arrays with every element both equal and not equal to some elements at offset (-1,0) (-1,1) (0,-1) (0,1) or (1,0), with upper left element zero.
8
0, 0, 0, 0, 2, 0, 0, 3, 3, 0, 0, 10, 16, 10, 0, 0, 27, 66, 66, 27, 0, 0, 76, 351, 670, 351, 76, 0, 0, 214, 1758, 6285, 6285, 1758, 214, 0, 0, 599, 9033, 61123, 114028, 61123, 9033, 599, 0, 0, 1683, 46159, 588464, 2066549, 2066549, 588464, 46159, 1683, 0, 0, 4721, 236245
OFFSET
1,5
COMMENTS
Table starts
.0....0.......0.........0............0..............0.................0
.0....2.......3........10...........27.............76...............214
.0....3......16........66..........351...........1758..............9033
.0...10......66.......670.........6285..........61123............588464
.0...27.....351......6285.......114028........2066549..........37564017
.0...76....1758.....61123......2066549.......70793904........2422349439
.0..214....9033....588464.....37564017.....2422349439......156188151088
.0..599...46159...5678912....682015651....82874815951....10066675051315
.0.1683..236245..54772100..12386272982..2835664463158...648924377800150
.0.4721.1208622.528291059.224933023893.97019475542749.41828515552220496
LINKS
FORMULA
Empirical for column k:
k=2: a(n) = a(n-1) +4*a(n-2) +3*a(n-3) for n>5
k=3: [order 13] for n>16
k=4: [order 33] for n>35
k=5: [order 86] for n>90
EXAMPLE
Some solutions for n=4 k=4
..0..0..1..1. .0..1..1..0. .0..1..1..0. .0..1..0..1. .0..0..1..1
..1..1..1..0. .0..0..1..0. .0..0..0..0. .0..1..0..1. .1..0..1..0
..1..0..0..0. .0..0..1..1. .0..1..1..1. .1..0..1..1. .1..0..1..0
..0..1..1..1. .1..1..0..0. .0..0..0..1. .1..1..0..0. .1..1..1..1
CROSSREFS
Sequence in context: A334218 A342984 A342985 * A245487 A074734 A174956
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 11 2016
STATUS
approved