

A334218


Triangle read by rows: T(n,k) is the number of permutations of 1..n arranged in a circle with exactly k descents.


9



1, 1, 0, 0, 2, 0, 0, 3, 3, 0, 0, 4, 16, 4, 0, 0, 5, 55, 55, 5, 0, 0, 6, 156, 396, 156, 6, 0, 0, 7, 399, 2114, 2114, 399, 7, 0, 0, 8, 960, 9528, 19328, 9528, 960, 8, 0, 0, 9, 2223, 38637, 140571, 140571, 38637, 2223, 9, 0, 0, 10, 5020, 146080, 882340, 1561900, 882340, 146080, 5020, 10, 0
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,5


LINKS

Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)


FORMULA

T(n, k) = n*A008292(n1, k) for n > 1.
T(n, k) = T(n, nk) for n > 1.
T(n, k) = n*Sum_{j=0..k} (1)^j * (kj)^(n1) * binomial(n, j) for n > 0.


EXAMPLE

Triangle begins:
1;
1, 0;
0, 2, 0;
0, 3, 3, 0;
0, 4, 16, 4, 0;
0, 5, 55, 55, 5, 0;
0, 6, 156, 396, 156, 6, 0;
0, 7, 399, 2114, 2114, 399, 7, 0;
0, 8, 960, 9528, 19328, 9528, 960, 8, 0;
...


PROG

(PARI) T(n, k) = {if(n==0, k==0, n*sum(j=0, k, (1)^j * (kj)^(n1) * binomial(n, j)))}


CROSSREFS

Columns k=2..9 are A027540(n1), A151576, A151577, A151578, A151579, A151580, A151581, A151582.
Row sums are A000142.
Cf. A008292.
Sequence in context: A188122 A341841 A050186 * A342984 A342985 A278094
Adjacent sequences: A334215 A334216 A334217 * A334219 A334220 A334221


KEYWORD

nonn,tabl


AUTHOR

Andrew Howroyd, May 04 2020


STATUS

approved



