login
A277812
a(n) = the first odious number encountered when starting from k = n and iterating the map k -> A003188(A006068(k)/2).
3
1, 2, 1, 4, 2, 1, 7, 8, 4, 2, 11, 1, 13, 14, 7, 16, 8, 4, 19, 2, 21, 22, 11, 1, 25, 26, 13, 28, 14, 7, 31, 32, 16, 8, 35, 4, 37, 38, 19, 2, 41, 42, 21, 44, 22, 11, 47, 1, 49, 50, 25, 52, 26, 13, 55, 56, 28, 14, 59, 7, 61, 62, 31, 64, 32, 16, 67, 8, 69, 70, 35, 4, 73, 74, 37, 76, 38, 19, 79, 2, 81, 82, 41, 84, 42, 21, 87, 88, 44, 22, 91, 11, 93, 94, 47, 1, 97, 98, 49, 100
OFFSET
1,2
FORMULA
If A010060(n) = 1 [when n is one of the odious numbers, A000069], then a(n) = n, otherwise a(n) = a(A003188(A006068(n)/2)).
Other identities:
a(n) = A000069(A277813(n)).
If A010060(n) = 0 [when n is one of the evil numbers, A001969], then a(n)= a(A000265(n)) [the trailing zeros in binary expansion of n do not affect the result].
For all n >= 1, a(A000069(n)) = A000069(n). [By definition].
For all n > 1, a(A001969(n)) < A001969(n).
PROG
(Scheme, with memoization-macro definec)
(definec (A277812 n) (if (= 1 (A010060 n)) n (A277812 (A003188 (/ (A006068 n) 2)))))
CROSSREFS
Cf. A277808 (gives the number of such iterations needed to reach a(n) from n).
Cf. A003945 (the positions of 1's in this sequence).
Sequence in context: A239829 A210034 A074586 * A134586 A135287 A359803
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, Nov 03 2016
STATUS
approved