This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A277731 Fixed point of the morphism 0 -> 01, 1 -> 012, 2 -> 0; starting with a(1) = 0. 4
 0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 0, 0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 0, 0, 1, 0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 0, 0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 0, 0, 1, 0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 0, 0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 0, 0, 1, 0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 0, 0, 1, 0, 1, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS After k = 0,1,2,3,... applications of the morphism we have 0, 01, 01012, 01012010120, ... which have lengths 1, 2, 5, 11, 24, 53, 117, ..., satisfying b(n) = 2*b(n-1) + b(n-3) (cf. A052980). LINKS N. J. A. Sloane, Table of n, a(n) for n = 1..20000 MAPLE with(ListTools); T:=proc(S) Flatten(subs( {0=[0, 1], 1=[0, 1, 2], 2=[0]}, S)); end; S:=[0]; for n from 1 to 10 do S:=T(S); od: S; CROSSREFS Cf. A052980, A277732, A277733, A277734. Sequence in context: A091830 A029427 A132343 * A287002 A119346 A014586 Adjacent sequences:  A277728 A277729 A277730 * A277732 A277733 A277734 KEYWORD nonn AUTHOR N. J. A. Sloane, Nov 07 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.