login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A287002 Start with 0 and repeatedly substitute 0->01, 1->20, 2->1. 6
0, 1, 2, 0, 1, 0, 1, 2, 0, 0, 1, 2, 0, 1, 0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 0, 0, 1, 2, 0, 0, 1, 2, 0, 1, 0, 1, 2, 0, 0, 1, 2, 0, 1, 0, 1, 0, 1, 2, 0, 1, 0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 0, 0, 1, 2, 0, 1, 0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 0, 0, 1, 2, 0, 0, 1, 2, 0, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

A fixed point of the morphism 0->01, 1->20, 2->1.  Let u be the sequence of positions of 0, and likewise, v for 1 and w for 2.  Let U, V, W be the limits of u(n)/n, v(n)/n, w(n)/n, respectively.  Then 1/U + 1/V + 1/W = 1, where

U = 2.246979603717467061050009768008...,

V = 2.801937735804838252472204639014...,

W = 5.048917339522305313522214407023...

If n >=2, then u(n) - u(n-1) is in {1,2,3}, v(n) - v(n-1) is in {2,3,4}, and w(n) - w(n-1) is in {4,5,7}.

LINKS

Clark Kimberling, Table of n, a(n) for n = 1..10000

Index entries for sequences that are fixed points of mappings

MATHEMATICA

s = Nest[Flatten[# /. {0 -> {0, 1}, 1 -> {2, 0}, 2 -> 1}] &, {0}, 10] (* A287002 *)

Flatten[Position[s, 0]]  (* A287003 *)

Flatten[Position[s, 1]]  (* A287004 *)

Flatten[Position[s, 2]]  (* A287081 *)

CROSSREFS

Cf. A287003, A287004, A287081.

Sequence in context: A132343 A277731 A298307 * A119346 A014586 A122924

Adjacent sequences:  A286999 A287000 A287001 * A287003 A287004 A287005

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, May 21 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 15 00:14 EDT 2019. Contains 328025 sequences. (Running on oeis4.)