login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A277380 a(n) = Sum_{k>=1} H_n(k-1)/2^k, where H_n(x) is n-th Hermite polynomial. 3
1, 2, 10, 92, 1068, 15352, 265752, 5368400, 123919248, 3217983008, 92851377312, 2947037232064, 102040223376576, 3827536020146048, 154615082607931776, 6691872388083371264, 308938595472492867840, 15153942107317778727424, 787050616613300039649792 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..380

Eric Weisstein's World of Mathematics, Hermite Polynomial

Wikipedia, Hermite polynomials

FORMULA

a(n) ~ c * 2^n * n! / (log(2))^n, where c = 0.639705404891769467944095575437073306645289161842121830191257596548619914238... - Vaclav Kotesovec, Jul 13 2018

MATHEMATICA

Table[Sum[HermiteH[n, k - 1]/2^k, {k, 1, Infinity}], {n, 0, 20}]

PROG

(PARI) for(n=0, 40, print1(if(n==0, 1, ceil(sum(k=1, 15*n, polhermite(n, k-1)/2^k))), ", ")) \\ G. C. Greubel, Jul 13 2018

(PARI) nmax = 40; p = floor(2*log(nmax!*(2/log(2))^nmax)/log(10)); default(realprecision, p); a(n) = round(suminf(k=1, polhermite(n, k-1)/2^k));

for(n=0, nmax, print1(a(n), ", ")); \\ Michel Marcus and Vaclav Kotesovec, Jul 13 2018

CROSSREFS

Cf. A277381, A316778.

Sequence in context: A086587 A082472 A095937 * A108528 A181136 A182952

Adjacent sequences:  A277377 A277378 A277379 * A277381 A277382 A277383

KEYWORD

nonn

AUTHOR

Vladimir Reshetnikov, Oct 11 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 5 18:48 EDT 2020. Contains 334854 sequences. (Running on oeis4.)