OFFSET
1,2
LINKS
Paul D. Hanna, Table of n, a(n) for n = 1..300
FORMULA
G.f. A(x) also satisfies:
(1) A(x) = x + 6 * A( 5*x/6 + A(x)/6 )^2.
(2) A(x) = -5*x + 6 * Series_Reversion(x - A(x)^2).
(3) R(x) = -x/5 + 6/5 * Series_Reversion(x + 5*A(x)^2), where R(A(x)) = x.
(4) R( sqrt( x/6 - R(x)/6 ) ) = x/6 + 5*R(x)/6, where R(A(x)) = x.
a(n) = Sum_{k=0..n-1} A277295(n,k) * 6^(n-k-1).
EXAMPLE
G.f.: A(x) = x + 6*x^2 + 84*x^3 + 1614*x^4 + 36948*x^5 + 947412*x^6 + 26334072*x^7 + 778107150*x^8 + 24133349532*x^9 + 778923367284*x^10 +...
PROG
(PARI) {a(n) = my(A=[1], F=x); for(i=1, n, A=concat(A, 0); F=x*Ser(A); A[#A] = -polcoeff(subst(F, x, x - F^2) - 5*F^2, #A) ); A[n]}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Cf. A276364.
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 09 2016
STATUS
approved