login
A277300
G.f. satisfies: A(x - A(x)^2) = x + 4*A(x)^2.
13
1, 5, 60, 1000, 19970, 448160, 10926360, 283651245, 7740058300, 220046970860, 6476695275680, 196438030797880, 6117627849485360, 195082685133612800, 6355848358118392400, 211189970909192038500, 7146354688384980282000, 245970478274041025623200, 8602606263466490521359400, 305460999044315834902424200, 11003870605124169641012461600
OFFSET
1,2
LINKS
FORMULA
G.f. A(x) also satisfies:
(1) A(x) = x + 5 * A( 4*x/5 + A(x)/5 )^2.
(2) A(x) = -4*x + 5 * Series_Reversion(x - A(x)^2).
(3) R(x) = -x/4 + 5/4 * Series_Reversion(x + 4*A(x)^2), where R(A(x)) = x.
(4) R( sqrt( x/5 - R(x)/5 ) ) = x/5 + 4*R(x)/5, where R(A(x)) = x.
a(n) = Sum_{k=0..n-1} A277295(n,k) * 5^(n-k-1).
EXAMPLE
G.f.: A(x) = x + 5*x^2 + 60*x^3 + 1000*x^4 + 19970*x^5 + 448160*x^6 + 10926360*x^7 + 283651245*x^8 + 7740058300*x^9 + 220046970860*x^10 +...
MATHEMATICA
m = 22; A[_] = 0;
Do[A[x_] = x + 5 A[4x/5 + A[x]/5]^2 + O[x]^m // Normal, {m}];
CoefficientList[A[x]/x, x] (* Jean-François Alcover, Sep 30 2019 *)
PROG
(PARI) {a(n) = my(A=[1], F=x); for(i=1, n, A=concat(A, 0); F=x*Ser(A); A[#A] = -polcoeff(subst(F, x, x - F^2) - 4*F^2, #A) ); A[n]}
for(n=1, 30, print1(a(n), ", "))
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 09 2016
STATUS
approved