OFFSET
1,1
COMMENTS
Super-Poulet numbers A050217 is a subsequence.
From Robert Israel, Sep 16 2016: (Start)
If p is a Wieferich prime (A001220), p^2 is in this sequence.
If p is a non-Wieferich prime, there are terms of the sequence divisible by p iff p < A006530(2^p-2). Is the latter true for all primes p except 2,3,5,7 and 13? (End)
LINKS
Robert Israel, Table of n, a(n) for n = 1..1000
MAPLE
filter:= n -> not isprime(n) and 2 &^ min(numtheory:-factorset(n)) - 2 mod n = 0:
select(filter, [seq(i, i=3..100000, 2)]); # Robert Israel, Sep 16 2016
PROG
(PARI) lista(nn) = forcomposite(n=2, nn, if (Mod(2, n)^factor(n)[1, 1] == Mod(2, n), print1(n, ", ")); ); \\ Michel Marcus, Sep 16 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Thomas Ordowski, Sep 16 2016
EXTENSIONS
More terms from Michel Marcus, Sep 16 2016
STATUS
approved