

A050217


SuperPoulet numbers: Poulet numbers whose divisors d all satisfy d2^d2.


6



341, 1387, 2047, 2701, 3277, 4033, 4369, 4681, 5461, 7957, 8321, 10261, 13747, 14491, 15709, 18721, 19951, 23377, 31417, 31609, 31621, 35333, 42799, 49141, 49981, 60701, 60787, 65077, 65281, 80581, 83333, 85489, 88357, 90751
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Every semiprime in A001567 is in this sequence (see Sierpinski). a(61)=294409 is the first term having more than two prime factors. See A178997 for superPoulet numbers having more than two prime factors. [T. D. Noe, Jan 11, 2011]


REFERENCES

W. Sierpinski, Elementary Theory of Numbers, Warszawa, 1964, p. 231.


LINKS

T. D. Noe, Table of n, a(n) for n = 1..1000
Eric Weisstein's World of Mathematics, SuperPoulet Numbers
Wikipedia, SuperPoulet number


MATHEMATICA

Select[Range[1, 110000, 2], !PrimeQ[#] && Union[PowerMod[2, Rest[Divisors[#]], #]] == {2} & ]


CROSSREFS

A214305 is a subsequence.
Cf. A001567.
Sequence in context: A083876 A068216 A038473 * A214305 A086837 A020230
Adjacent sequences: A050214 A050215 A050216 * A050218 A050219 A050220


KEYWORD

nonn


AUTHOR

Eric W. Weisstein


STATUS

approved



