

A050217


SuperPoulet numbers: Poulet numbers whose divisors d all satisfy d2^d2.


6



341, 1387, 2047, 2701, 3277, 4033, 4369, 4681, 5461, 7957, 8321, 10261, 13747, 14491, 15709, 18721, 19951, 23377, 31417, 31609, 31621, 35333, 42799, 49141, 49981, 60701, 60787, 65077, 65281, 80581, 83333, 85489, 88357, 90751
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Every semiprime in A001567 is in this sequence (see Sierpiński). a(61)=294409 is the first term having more than two prime factors. See A178997 for superPoulet numbers having more than two prime factors.  T. D. Noe, Jan 11 2011


REFERENCES

W. Sierpiński, Elementary Theory of Numbers, Warszawa, 1964, p. 231.


LINKS

T. D. Noe, Table of n, a(n) for n = 1..1000
Eric Weisstein's World of Mathematics, SuperPoulet Numbers
Wikipedia, SuperPoulet number


MATHEMATICA

Select[Range[1, 110000, 2], !PrimeQ[#] && Union[PowerMod[2, Rest[Divisors[#]], #]] == {2} & ]


CROSSREFS

A214305 is a subsequence.
Cf. A001567.
Sequence in context: A083876 A068216 A038473 * A214305 A086837 A020230
Adjacent sequences: A050214 A050215 A050216 * A050218 A050219 A050220


KEYWORD

nonn


AUTHOR

Eric W. Weisstein


STATUS

approved



