login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276509
Numbers k in base 10 such that the digits of 2 + k are the digits of 2k written in reverse order.
1
2, 47, 497, 4997, 49997, 499997, 4999997, 49999997, 499999997, 4999999997, 49999999997, 499999999997, 4999999999997, 49999999999997, 499999999999997, 4999999999999997, 49999999999999997, 499999999999999997, 4999999999999999997, 49999999999999999997, 499999999999999999997
OFFSET
1,1
LINKS
FORMULA
a(n) = 5 * 10^(n - 1) - 3. - Peter Bala, Sep 06 2016
G.f.: x*(2 + 25*x)/(1 - 11*x + 10*x^2). - Michael De Vlieger, Sep 06 2016
E.g.f.: (exp(10*x) - 6*exp(x) + 5)/2. - Stefano Spezia, Mar 04 2023
EXAMPLE
47 is in the sequence because 47 + 2 = 49 and 47*2 = 94.
497 is in the sequence because 497 + 2 = 499 and 497*2 = 994.
MATHEMATICA
Select[Range[10^6], IntegerDigits[# + 2] == Reverse@ IntegerDigits[2 #] &] (* or *)
Table[5 (10^(n - 1)) - 3, {n, 22}] (* or *)
CoefficientList[Series[x(2 + 25 x)/(1 - 11 x + 10 x^2), {x, 0, 21}], x] (* or *)
{2}~Join~Table[FromDigits@ Join[{4}, ConstantArray[9, {n - 2}], {7}], {n, 2, 22}] (* Michael De Vlieger, Sep 06 2016 *)
PROG
(PARI) isok(n) = digits(n+2) == Vecrev(digits(2*n)); \\ Michel Marcus, Sep 07 2016
(Magma) [5*10^(n-1)-3: n in [1..25]]; // Vincenzo Librandi, Sep 09 2016
CROSSREFS
Sequence in context: A128822 A226420 A160922 * A120050 A112783 A277655
KEYWORD
nonn,base,easy
AUTHOR
STATUS
approved