|
|
A276510
|
|
Numbers n such that the sum of all the different permutations of the digits of n (A045876(n)) is a pandigital number (a member of A171102).
|
|
1
|
|
|
10234567, 10234576, 10234579, 10234597, 10234657, 10234675, 10234678, 10234687, 10234756, 10234759, 10234765, 10234768, 10234786, 10234795, 10234867, 10234876, 10234957, 10234975, 10235467, 10235476, 10235479, 10235497, 10235647, 10235674, 10235746, 10235749
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Table of n, a(n) for n=1..26.
|
|
EXAMPLE
|
10234759 is a term because A045876(10234759) = 1567999984320, which contains every digit from 0 to 9.
|
|
PROG
|
(PARI) A047726(n) = n=eval(Vec(Str(n))); (#n)!/prod(i=0, 9, sum(j=1, #n, n[j]==i)!);
A055642(n) = #Str(n);
A007953(n) = sumdigits(n);
A045876(n) = ((10^A055642(n)-1)/9)*(A047726(n)*A007953(n)/A055642(n));
isA171102(n) = 9<#vecsort(Vecsmall(Str(n)), , 8);
is(n) = isA171102(A045876(n));
|
|
CROSSREFS
|
Cf. A045876, A171102.
Sequence in context: A325607 A282873 A219743 * A235696 A074665 A235160
Adjacent sequences: A276507 A276508 A276509 * A276511 A276512 A276513
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
Altug Alkan, Sep 06 2016
|
|
STATUS
|
approved
|
|
|
|