login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A276326
Numbers expressed in greedy A001563-base.
12
0, 1, 2, 3, 10, 11, 12, 13, 20, 21, 22, 23, 30, 31, 32, 33, 40, 41, 100, 101, 102, 103, 110, 111, 112, 113, 120, 121, 122, 123, 130, 131, 132, 133, 140, 141, 200, 201, 202, 203, 210, 211, 212, 213, 220, 221, 222, 223, 230, 231, 232, 233, 240, 241, 300, 301, 302, 303, 310, 311, 312, 313, 320, 321, 322, 323, 330, 331, 332, 333, 340, 341, 400
OFFSET
0,3
COMMENTS
Terms A001563(1) = 1, A001563(2) = 4, A001563(3) = 18, ... give the base values for the digit positions from 1 onward. Digit places are filled by always trying to find the largest possible term of A001563 that still fits into the sum.
A130744(8) = 3225600 = 10*A001563(8) is the first number which yields an ambiguous representation when expressed in decimal, because in this base it is actually "A0000000" (where digit "A" stands for ten).
LINKS
EXAMPLE
To recover n from a(n) the digits in positions i = 1, 2, 3, ... (starting indexing from the least significant digit at right) are multiplied by A001563(i) and added together:
----------------
n a(n)
----------------
0 0
1 1
2 2
3 3
4 10
5 11
6 12
7 13
8 20
9 21
10 22
11 23
12 30
13 31
14 32
15 33
16 40
17 41 (as 4*A001563(2) + 1*A001563(1) = 17)
18 100 (as 1*A001563(3) + 0*A001563(2) + 0*A001563(1) = 18)
and:
3225599 99111111 (as 3225599 = 9*b(8) + 9*b(7) + b(6) + b(5) + b(4) + b(3) + b(2) + b(1)), where b(n) = A001563(n).
MATHEMATICA
f[n_] := Block[{a = {{0, n}}}, Do[AppendTo[a, {First@ #, Last@ #} &@ QuotientRemainder[a[[-1, -1]], (# #!) &[# - i]]], {i, 0, # - 1}] &@ NestWhile[# + 1 &, 0, (# #!) &[# + 1] <= n &]; Rest[a][[All, 1]]]; Table[FromDigits@ f@ n, {n, 72}] (* Michael De Vlieger, Aug 31 2016 *)
PROG
(Scheme)
(define (A276326 n) (let loop ((n n) (s 0)) (if (zero? n) s (let ((dig (A276333 n))) (if (> dig 9) (error "A276326: ambiguous representation of n, digit > 9 would be needed: " n dig) (loop (A276335 n) (+ s (* dig (expt 10 (- (A258198 n) 1))))))))))
CROSSREFS
Cf. A276327 (the least significant nonzero digit).
Cf. A276328 (the sum of digits).
Cf. A276333 (the most significant digit).
Cf. A276336 (a largest digit).
Cf. A276337 (number of nonzero digits).
Cf. A033312 (repunits).
Cf. A276091 (no digits larger than one).
Differs from A007090 for the first time at n=16 and from A055655 at n=18.
Sequence in context: A288657 A055655 A371030 * A007090 A102859 A069967
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, Aug 30 2016
STATUS
approved