The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A276317 a(n) = b(n)/c(n) where b(n) = smallest positive k such that (2*k)^2 + 2*n - 1 is prime and c(n) = gcd(n,3) = A109007(n). 0
 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 4, 1, 2, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 4, 2, 2, 1, 2, 1, 4, 1, 1, 1, 1, 5, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 2, 1, 5, 2, 1, 1, 3, 2, 2, 3, 1, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,11 LINKS EXAMPLE a(1) = b(1)/c(1) = 1/1 = 1 because b(1) = (2*1)^2 + 2*1 - 1 = 5 and 5 is prime, c(1) = gcd(1,3) + A109007(1) = 1, a(2) = b(2)/c(2) = 1/1 = 1 because b(2) = (2*1)^2 + 2*2 - 1 = 7 and 7 is prime, c(2) = gcd(2,3) + A109007(2) = 1, a(3) = b(3)/c(3) = 3/3 = 1 because b(2) = (2*3)^2 + 2*3 - 1 = 41 and 41 is prime, c(3) = gcd(3,3) + A109007(3) = 3. MATHEMATICA Table[k = 1; While[! PrimeQ[(2 k)^2 + 2 n - 1], k++]; k/GCD[n, 3], {n, 97}] (* Michael De Vlieger, Aug 31 2016 *) CROSSREFS Cf. A109007, A023204. Sequence in context: A319661 A320015 A241918 * A289944 A055215 A239550 Adjacent sequences:  A276314 A276315 A276316 * A276318 A276319 A276320 KEYWORD nonn AUTHOR Juri-Stepan Gerasimov, Aug 29 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 27 12:22 EST 2020. Contains 332306 sequences. (Running on oeis4.)