login
A276320
Least number k such that d(Sum_{j=0..n}{k-j}) = d(Sum_{j=0..n}{k+j}).
3
1, 2, 5, 4, 5, 6, 8, 12, 9, 10, 12, 15, 13, 15, 15, 16, 17, 18, 20, 21, 21, 24, 30, 30, 25, 26, 29, 28, 33, 30, 32, 32, 36, 35, 35, 36, 39, 44, 42, 45, 42, 45, 45, 48, 45, 46, 47, 60, 50, 51, 53, 54, 57, 54, 56, 63, 63, 58, 59, 60, 62, 63, 72, 65, 69, 66, 70, 68
OFFSET
0,2
LINKS
FORMULA
Solutions of the equation d((n+1)*(2*k-n)/2) = d((n+1)*(2*k+n)/2).
EXAMPLE
a(8) = 12 because d(5+6+7+8+9+10+11+12) = d(12+13+14+15+16+17+18+19) = 6.
MAPLE
with(numtheory): P:= proc(q) local k, n; print(1);
for n from 1 to q do for k from n to q do
if tau((n+1)*(2*k-n)/2)=tau((n+1)*(2*k+n)/2)
then print(k); break; fi; od; od; end: P(10^9);
MATHEMATICA
Table[k = n; While[DivisorSigma[0, Sum[k - j, {j, 0, n}]] != DivisorSigma[0, Sum[k + j, {j, 0, n}]], k++]; k, {n, 0, 67}] (* Michael De Vlieger, Aug 30 2016 *)
PROG
(PARI) a(n) = {if (n==0, k = 1, k = n); while (numdiv((n+1)*(2*k-n)/2) != numdiv((n+1)*(2*k+n)/2), k++); k; } \\ Michel Marcus, Aug 31 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paolo P. Lava, Aug 30 2016
STATUS
approved