OFFSET
0,2
LINKS
Paolo P. Lava, Table of n, a(n) for n = 0..1000
FORMULA
Solutions of the equation d((n+1)*(2*k-n)/2) = d((n+1)*(2*k+n)/2).
EXAMPLE
a(8) = 12 because d(5+6+7+8+9+10+11+12) = d(12+13+14+15+16+17+18+19) = 6.
MAPLE
with(numtheory): P:= proc(q) local k, n; print(1);
for n from 1 to q do for k from n to q do
if tau((n+1)*(2*k-n)/2)=tau((n+1)*(2*k+n)/2)
then print(k); break; fi; od; od; end: P(10^9);
MATHEMATICA
Table[k = n; While[DivisorSigma[0, Sum[k - j, {j, 0, n}]] != DivisorSigma[0, Sum[k + j, {j, 0, n}]], k++]; k, {n, 0, 67}] (* Michael De Vlieger, Aug 30 2016 *)
PROG
(PARI) a(n) = {if (n==0, k = 1, k = n); while (numdiv((n+1)*(2*k-n)/2) != numdiv((n+1)*(2*k+n)/2), k++); k; } \\ Michel Marcus, Aug 31 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paolo P. Lava, Aug 30 2016
STATUS
approved