login
A276202
Smallest integer k such that the number of semiprimes in {k, f(k), f(f(k)), ..., 1} is equal to n, where f is the Collatz function.
1
1, 4, 3, 6, 11, 7, 14, 9, 25, 33, 59, 57, 39, 135, 191, 127, 123, 159, 219, 379, 251, 167, 223, 111, 793, 263, 175, 466, 103, 137, 183, 91, 121, 107, 71, 47, 31, 41, 27, 97, 145, 129, 171, 231, 235, 553, 411, 487, 327, 649, 703, 763, 1519, 1215, 1471, 1071
OFFSET
0,2
COMMENTS
Smallest k such that A275866(k) is equal to n.
Conjecture: a(n) exists for any n.
EXAMPLE
a(5)=7 because the trajectory of 7 is 7 -> 22 -> 11 -> 34 -> 17 -> 52 -> 26 -> 13 -> 40 -> 20 -> 10 -> 5 -> 16 -> 8 -> 4 -> 2 -> 1 and the 5 semiprimes of this trajectory are 22, 34, 26, 10 and 4.
MATHEMATICA
f[n_]:=n/2/; Mod[n, 2]==0; f[n_]:=3 n+1/; Mod[n, 2]==1; g[n_]:=Module[{i, p}, i=n; p=0; While[i>1, If[PrimeOmega[i]==2, p=p+1]; i=f[i]]; p]; Do[k=1; While[g[k]!=m, k++]; Print[m, " ", k], {m, 0, 53}]
CROSSREFS
Sequence in context: A353401 A196889 A005522 * A215336 A328650 A343891
KEYWORD
nonn
AUTHOR
Michel Lagneau, Aug 29 2016
STATUS
approved