login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A215336 Cyclically smooth Lyndon words with 4 colors. 2
4, 3, 6, 11, 26, 52, 124, 275, 648, 1511, 3618, 8635, 20920, 50758, 124114, 304425, 750330, 1854716, 4600692, 11441298, 28528484, 71290791, 178529666, 447914775, 1125756830, 2833896220, 7144466184, 18036398490, 45591671450, 115381759707, 292329164908, 741410952975, 1882219946418, 4782782372655, 12163730636096 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

We call a Lyndon word (x[1],x[2],...,x[n]) smooth if abs(x[k]-x[k-1]) <= 1 for 2<=k<=n, and cyclically smooth if abs(x[1]-x[n]) <= 1.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..200

Arnold Knopfmacher, Toufik Mansour, Augustine Munagi, Helmut Prodinger, Smooth words and Chebyshev polynomials, arXiv:0809.0551 [math.CO], 2008.

FORMULA

a(n) = sum_{ d divides n } moebius(n/d) * A208773(d).

EXAMPLE

The cyclically smooth necklaces (N) and Lyndon words (L) of length 4 with 4 colors (using symbols ".", "1", "2", and "3") are:

    ....   1       .  N

    ...1   4    ...1  N L

    ..11   4    ..11  N L

    .1.1   2      .1  N

    .111   4    .111  N L

    .121   4    .121  N L

    1111   1       1  N

    1112   4    1112  N L

    1122   4    1122  N L

    1212   2      12  N

    1222   4    1222  N L

    1232   4    1232  N L

    2222   1       2  N

    2223   4    2223  N L

    2233   4    2233  N L

    2323   2      23  N

    2333   4    2333  N L

    3333   1       3  N

There are 18 necklaces (so A208773(4)=24) and a(4)=11 Lyndon words.

PROG

(PARI)

default(realprecision, 99); /* using floats */

sn(n, k)=1/n*sum(i=1, k, sumdiv(n, j, eulerphi(j)*(1+2*cos(i*Pi/(k+1)))^(n/j)));

vn=vector(66, n, round(sn(n, 4)) ); /* necklaces */

/* Lyndon words, via Moebius inversion: */

vl=vector(#vn, n, sumdiv(n, d, moebius(n/d)*vn[d]))

CROSSREFS

Cf. A208773 (cyclically smooth necklaces, 4 colors).

Cf. A215329 (smooth necklaces, 4 colors), A215330 (smooth Lyndon words, 4 colors).

Sequence in context: A196889 A005522 A276202 * A232328 A276229 A077955

Adjacent sequences:  A215333 A215334 A215335 * A215337 A215338 A215339

KEYWORD

nonn

AUTHOR

Joerg Arndt, Aug 13 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 23 19:03 EST 2017. Contains 295128 sequences.