login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A275970 a(n) = 3*2^n + n - 1. 1
2, 6, 13, 26, 51, 100, 197, 390, 775, 1544, 3081, 6154, 12299, 24588, 49165, 98318, 196623, 393232, 786449, 1572882, 3145747, 6291476, 12582933, 25165846, 50331671, 100663320, 201326617, 402653210, 805306395, 1610612764, 3221225501, 6442450974, 12884901919, 25769803808, 51539607585, 103079215138, 206158430243, 412316860452, 824633720869 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

Carauleanu Marc, Table of n, a(n) for n = 0..400

S. W. Golomb, Properties of the sequence 3.2^n+1, Math. Comp., 30 (1976), 657-663.

Index entries for linear recurrences with constant coefficients, signature (4,-5,2).

FORMULA

a(n) = 2*a(n-1) - n + 2.

a(n+1) - a(n) = A181565(n)

a(n) = A007283(n) + n - 1

a(n) = A083706(n) + A000079(n)

a(n) = A145071(n+1) - A000079(n)

a(n) = A079583(n) + A005408(n)

a(n) = A068156(n+1) - A079583(n)

a(n) = (A068156(n+1) + A005408(n)) / 2

a(n) = A000225(n) + A000325(n+1) + A005408(n)

a(n) = A068156(n+1) - A000225(n) - A000325(n+1)

a(n) = A068156(n+1) - A007283(n) + n + 2.

a(n) = A000079(n) + A000225(n) + A000295(n) + A005408(n)

From G. C. Greubel, Aug 18 2016: (Start)

O.g.f.: (2 - 2*x - x^2)/( (1-2*x)*(1-x)^2 ).

E.g.f.: 3*exp(2*x) + (x-1)*exp(x).

a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-2). (End)

MATHEMATICA

LinearRecurrence[{4, -5, 2}, {2, 6, 13}, 25] (* or *) Table[3*2^n + n - 1, {n, 0, 25}] (* G. C. Greubel, Aug 18 2016 *)

PROG

(PARI) a(n)=3*2^n+n-1 \\ Charles R Greathouse IV, Aug 27 2016

CROSSREFS

Sequence in context: A172348 A254821 A192953 * A124677 A034465 A182614

Adjacent sequences:  A275967 A275968 A275969 * A275971 A275972 A275973

KEYWORD

nonn,easy

AUTHOR

Miquel Cerda, Aug 15 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 20 05:01 EDT 2019. Contains 324229 sequences. (Running on oeis4.)