login
A274703
Exponential generating function 1/M_{3}(z^3) where M_{n}(z) is the n-th Mittag-Leffler function, nonzero coefficients only.
3
1, -4, 133, -15130, 4101799, -2177360656, 1999963458217, -2919514870785766, 6365117686550339275, -19765974970578036695068, 84220118333781814726917709, -477722110504065444764182065202, 3518554409906597166261453268226671, -32952557456293494405944914420304822440
OFFSET
0,2
COMMENTS
For references see also A274705 which is the main entry for this sequence of sequences.
LINKS
Eric Weisstein's MathWorld, Mittag-Leffler Function
FORMULA
E.g.f. (nonzero coefficients): z/((exp(z)+2*exp(-z/2)*cos(z*3^(1/2)/2))/3).
For n >= 1, a(n) = -Sum_{k=0..n-1} a(k) binomial(3n+1,3k+1). - Robert Israel, Jul 03 2016
MAPLE
s := series(z/((exp(z)+2*exp(-z/2)*cos(z*3^(1/2)/2))/3), z, 60):
seq((n*3+1)!*coeff(s, z, n*3+1), n=0..13);
MATHEMATICA
c = CoefficientList[Series[1/MittagLefflerE[3, z^3], {z, 0, 15*3}], z];
Table[Factorial[3*n+1]*c[[3*n+1]], {n, 0, 13}]
CROSSREFS
Cf. A181983 (n=1), A009843 (n=2), A274704 (n=4), A274705 (array).
Sequence in context: A194538 A194539 A146547 * A045482 A263588 A006429
KEYWORD
sign
AUTHOR
Peter Luschny, Jul 03 2016
STATUS
approved