OFFSET
0,2
COMMENTS
For references see also A274705 which is the main entry for this sequence of sequences.
LINKS
Robert Israel, Table of n, a(n) for n = 0..166
Eric Weisstein's MathWorld, Mittag-Leffler Function
Wikipedia, Mittag-Leffler function
FORMULA
E.g.f. (nonzero coefficients): z/((exp(z)+2*exp(-z/2)*cos(z*3^(1/2)/2))/3).
For n >= 1, a(n) = -Sum_{k=0..n-1} a(k) binomial(3n+1,3k+1). - Robert Israel, Jul 03 2016
MAPLE
s := series(z/((exp(z)+2*exp(-z/2)*cos(z*3^(1/2)/2))/3), z, 60):
seq((n*3+1)!*coeff(s, z, n*3+1), n=0..13);
MATHEMATICA
c = CoefficientList[Series[1/MittagLefflerE[3, z^3], {z, 0, 15*3}], z];
Table[Factorial[3*n+1]*c[[3*n+1]], {n, 0, 13}]
CROSSREFS
KEYWORD
sign
AUTHOR
Peter Luschny, Jul 03 2016
STATUS
approved