login
A274608
T(n, k) is the largest number that can be formed by multiplying k primes prime(i1+0),...,prime(ik+k-1) such that i1+...+ik = n. Triangle read by rows.
0
2, 3, 6, 5, 10, 30, 7, 15, 42, 210, 11, 22, 70, 330, 2310, 13, 35, 110, 462, 2730, 30030, 17, 55, 165, 770, 4290, 39270, 510510, 19, 77, 231, 1155, 6006, 46410, 570570, 9699690, 23, 91, 385, 1430, 10010, 72930, 746130, 11741730, 223092870, 29, 143, 455, 2145, 15015, 102102, 903210, 14804790, 281291010, 6469693230
OFFSET
1,1
FORMULA
T(n, 1) = prime(n)
T(n, n) = prime(n)# where p# denotes the primorial of p.
EXAMPLE
2,
3, 6,
5, 10, 30,
7, 15, 42, 210,
11, 22, 70, 330, 2310,
13, 35, 110, 462, 2730, 30030,
...
To find T(3, 2), we seek for the product of two primes prime(i) and prime(j) such that i + j = n + 0 + 1 = 4. This can be prime(1) * prime(3) = 2 * 5 = 10 and prime(2) * prime(2) = 3 * 3 = 9. The maximum is 10 so T(3, 2) = 10.
CROSSREFS
Sequence in context: A309840 A377566 A340316 * A319680 A350337 A133477
KEYWORD
nonn,tabl
AUTHOR
David A. Corneth, Jun 30 2016
STATUS
approved