login
A309840
If n = Sum (2^e_k) then a(n) = Product (Fibonacci(e_k + 3)).
1
1, 2, 3, 6, 5, 10, 15, 30, 8, 16, 24, 48, 40, 80, 120, 240, 13, 26, 39, 78, 65, 130, 195, 390, 104, 208, 312, 624, 520, 1040, 1560, 3120, 21, 42, 63, 126, 105, 210, 315, 630, 168, 336, 504, 1008, 840, 1680, 2520, 5040, 273, 546, 819, 1638, 1365, 2730, 4095, 8190
OFFSET
0,2
LINKS
Michael De Vlieger, Fan style binary tree showing a(n) for n = 0..2^14, showing primes in red, perfect prime powers in gold, squarefree composites in green, and numbers neither squarefree nor prime powers in blue and magenta, where magenta additionally represents powerful numbers that are not perfect prime powers and bright green represents primorials.
FORMULA
G.f.: Product_{k>=0} (1 + Fibonacci(k + 3) * x^(2^k)).
a(0) = 1; a(n) = Fibonacci(floor(log_2(n)) + 3) * a(n - 2^floor(log_2(n))).
a(2^(k-2)-1) = A003266(k).
EXAMPLE
23 = 2^0 + 2^1 + 2^2 + 2^4 so a(23) = Fibonacci(3) * Fibonacci(4) * Fibonacci(5) * Fibonacci(7) = 390.
MATHEMATICA
nmax = 55; CoefficientList[Series[Product[(1 + Fibonacci[k + 3] x^(2^k)), {k, 0, Floor[Log[2, nmax]] + 1}], {x, 0, nmax}], x]
a[0] = 1; a[n_] := Fibonacci[Floor[Log[2, n]] + 3] a[n - 2^Floor[Log[2, n]]]; Table[a[n], {n, 0, 55}]
PROG
(PARI) a(n)={vecprod([fibonacci(k+2) | k<-Vec(select(b->b, Vecrev(digits(n, 2)), 1))])} \\ Andrew Howroyd, Aug 19 2019
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Aug 19 2019
STATUS
approved