%I
%S 1,2,9,8,6,4,0,6,4,0,8,6,1,7,0,4,6,4,5,6,9,3,3,4,4,1,6,1,5,8,5,2,8,1,
%T 2,2,0,4,8,5,5,3,9,7,7,9,8,6,5,3,7,4,5,6,3,3,1,4,5,5,4,9,3,9,2,7,3,5,
%U 7,5,5,6,3,1,8,8,7,7,3,1,4,3,1,1,2,8
%N Decimal expansion of limiting ratio described in Comments.
%C As in A274193, define g(n,k) = 1 for n >= 0; g(n,k) = 0 if k > n; g(n,k) = g(n1,k1) + g(n1,3k) for n > 0, k > 1. The sum of numbers in the nth row of the array {g(n,k)} is given by A274194, and "limiting ratio" = limit of A274194(n)/A274194(n1).
%e Limiting ratio = 1.2986406408617046456933441615...
%t z = 1500; g[n_, 0] = g[n, 0] = 1;
%t g[n_, k_] := g[n, k] = If[k > n, 0, g[n  1, k  1] + g[n  1, 3 k]];
%t t = Table[g[n, k], {n, 0, z}, {k, 0, n}];
%t w = Map[Total, t]; (* A274194 *)
%t u = N[w[[z]]/w[[z  1]], 100]
%t RealDigits[u][[1]] (* A274195 *)
%Y Cf. A274193, A274194, A274198, A274210 (reciprocal).
%K nonn,cons,easy
%O 1,2
%A _Clark Kimberling_, Jun 16 2016
