

A274195


Decimal expansion of limiting ratio described in Comments.


5



1, 2, 9, 8, 6, 4, 0, 6, 4, 0, 8, 6, 1, 7, 0, 4, 6, 4, 5, 6, 9, 3, 3, 4, 4, 1, 6, 1, 5, 8, 5, 2, 8, 1, 2, 2, 0, 4, 8, 5, 5, 3, 9, 7, 7, 9, 8, 6, 5, 3, 7, 4, 5, 6, 3, 3, 1, 4, 5, 5, 4, 9, 3, 9, 2, 7, 3, 5, 7, 5, 5, 6, 3, 1, 8, 8, 7, 7, 3, 1, 4, 3, 1, 1, 2, 8
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

As in A274193, define g(n,k) = 1 for n >= 0; g(n,k) = 0 if k > n; g(n,k) = g(n1,k1) + g(n1,3k) for n > 0, k > 1. The sum of numbers in the nth row of the array {g(n,k)} is given by A274194, and "limiting ratio" = limit of A274194(n)/A274194(n1).


LINKS

Table of n, a(n) for n=1..86.


EXAMPLE

Limiting ratio = 1.2986406408617046456933441615...


MATHEMATICA

z = 1500; g[n_, 0] = g[n, 0] = 1;
g[n_, k_] := g[n, k] = If[k > n, 0, g[n  1, k  1] + g[n  1, 3 k]];
t = Table[g[n, k], {n, 0, z}, {k, 0, n}];
w = Map[Total, t]; (* A274194 *)
u = N[w[[z]]/w[[z  1]], 100]
RealDigits[u][[1]] (* A274195 *)


CROSSREFS

Cf. A274193, A274194, A274198, A274210 (reciprocal).
Sequence in context: A309211 A021339 A092971 * A021975 A192599 A021081
Adjacent sequences: A274192 A274193 A274194 * A274196 A274197 A274198


KEYWORD

nonn,cons,easy


AUTHOR

Clark Kimberling, Jun 16 2016


STATUS

approved



