login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A274129 Sum of all numbers that appear when we interpret an ordered subset of [0,1,...,n] containing n as the digits, possibly larger than nine, of a base ten number, with the smallest element being the least significant. 1
11, 253, 4257, 63085, 872861, 11569833, 148920497, 1876301845, 23259261861, 284671240513, 3448396611737, 41419505367405, 493973128085261, 5855648668464793, 69053522207998977, 810643999691917765, 9478691806054675061, 110443295770481522673 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Colin Barker, Table of n, a(n) for n = 1..950

Marko Riedel, Maple code to compute sequence by enumeration and from the generating function.

Math.Stackexchange.Com, Marko Riedel et al., Decreasing sequence numbers

Index entries for linear recurrences with constant coefficients, signature (24,-165,242).

FORMULA

a(n) = (10/9) * n * 11^n - (11/81) * (11^n-2^n).

G.f.: 11 * z * (1-z) / ((1-11z)^2 * (1-2z)).

a(n) = 24*a(n-1)-165*a(n-2)+242*a(n-3) for n>3. - Colin Barker, Jul 20 2016

EXAMPLE

a(2) = 253 because 210+21+20+2 = 253.

MAPLE

A274129 := n -> 10/9*n*11^n - 11/81*(11^n-2^n);

MATHEMATICA

CoefficientList[Series[11*x*(1 - x)/((1 - 11*x)^2*(1 - 2*x)), {x, 0, 100} ], x] (* G. C. Greubel, Jul 07 2016 *)

PROG

(PARI) Vec(11*x*(1-x)/((1-11*x)^2*(1-2*x)) + O(x^20)) \\ Colin Barker, Jul 20 2016

CROSSREFS

Sequence in context: A182350 A190680 A089298 * A012154 A009055 A009067

Adjacent sequences:  A274126 A274127 A274128 * A274130 A274131 A274132

KEYWORD

nonn,base,easy

AUTHOR

Marko Riedel, Jul 07 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 23 15:49 EST 2020. Contains 332168 sequences. (Running on oeis4.)