OFFSET
0,1
COMMENTS
The zeros of the sequence are given by A054729. The first five zeros of the sequence have indexes 150, 180, 210, 286, 304.
LINKS
Gheorghe Coserea, Table of n, a(n) for n = 0..100001
J. A. Csirik, M. Zieve, and J. Wetherell, On the genera of X0(N), arXiv:math/0006096 [math.NT], 2000.
FORMULA
a(n) = card {k, n = A001617(k)}.
EXAMPLE
MATHEMATICA
(* b = A001617 *) nmax = 71;
b[n_] := b[n] = If[n < 1, 0, 1 + Sum[ MoebiusMu[ d]^2 n/d / 12 - EulerPhi[ GCD[ d, n/d]] / 2, {d, Divisors[n]}] - Count[(#^2 - # + 1)/n& /@ Range[n], _?IntegerQ]/3 -Count[(#^2 + 1)/n& /@ Range[n], _?IntegerQ]/4];
Clear[f];
f[m_] := f[m] = Module[{}, A001617 = Array[b, m]; a[n_] := Count[A001617, n]; Table[a[n], {n, 0, nmax}]];
f[m = nmax]; f[m = m + nmax];
While[Print["m = ", m]; f[m] != f[m - nmax], m = m + nmax];
PROG
(PARI)
A000089(n) = {
if (n%4 == 0 || n%4 == 3, return(0));
if (n%2 == 0, n \= 2);
my(f = factor(n), fsz = matsize(f)[1]);
prod(k = 1, fsz, if (f[k, 1] % 4 == 3, 0, 2));
};
A000086(n) = {
if (n%9 == 0 || n%3 == 2, return(0));
if (n%3 == 0, n \= 3);
my(f = factor(n), fsz = matsize(f)[1]);
prod(k = 1, fsz, if (f[k, 1] % 3 == 2, 0, 2));
};
A001615(n) = {
my(f = factor(n), fsz = matsize(f)[1],
g = prod(k=1, fsz, (f[k, 1]+1)),
h = prod(k=1, fsz, f[k, 1]));
return((n*g)\h);
};
A001616(n) = {
my(f = factor(n), fsz = matsize(f)[1]);
prod(k = 1, fsz, f[k, 1]^(f[k, 2]\2) + f[k, 1]^((f[k, 2]-1)\2));
};
seq(n) = {
my(a = vector(n+1, g, 0), bnd = 12*n + 18*sqrtint(n) + 100, g);
for (k = 1, bnd, g = A001617(k);
if (g <= n, a[g+1]++));
return(a);
};
seq(72)
CROSSREFS
KEYWORD
nonn
AUTHOR
Gheorghe Coserea, May 22 2016
STATUS
approved