login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A273313
Number of active (ON, black) cells at stage 2^n-1 of the two-dimensional cellular automaton defined by "Rule 643", based on the 5-celled von Neumann neighborhood.
1
1, 5, 41, 217, 953, 3961, 16121, 65017, 261113, 1046521, 4190201, 16769017, 67092473, 268402681, 1073676281, 4294836217
OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
Conjecture: Rules 651, 707 and 715 also generate this sequence. - Lars Blomberg, Jul 17 2016
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
Conjecture: a(n) = 4*4^n - 4*2^n - 7, n>1. - Lars Blomberg, Jul 17 2016
Conjectures from Colin Barker, Jul 17 2016: (Start)
a(n) = 7*a(n-1)-14*a(n-2)+8*a(n-3) for n>4.
G.f.: (1-2*x+20*x^2-8*x^3-32*x^4) / ((1-x)*(1-2*x)*(1-4*x)).
(End)
MATHEMATICA
CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=643; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];
on=Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *)
Part[on, 2^Range[0, Log[2, stages]]] (* Extract relevant terms *)
CROSSREFS
Cf. A166147.
Sequence in context: A357612 A270211 A270182 * A356198 A198725 A190638
KEYWORD
nonn,more
AUTHOR
Robert Price, May 19 2016
EXTENSIONS
a(8)-a(15) from Lars Blomberg, Jul 17 2016
STATUS
approved