login
A273316
Partial sums of the number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 645", based on the 5-celled von Neumann neighborhood.
1
1, 9, 33, 81, 161, 281, 449, 673, 961, 1321, 1761, 2289, 2913, 3641, 4481, 5441, 6529, 7753, 9121, 10641, 12321, 14169, 16193, 18401, 20801, 23401, 26209, 29233, 32481, 35961, 39681, 43649, 47873, 52361, 57121, 62161, 67489, 73113, 79041, 85281, 91841, 98729
OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
Conjectures from Colin Barker, May 19 2016: (Start)
a(n) = (4*n^3+12*n^2+8*n+3)/3.
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4) for n>3.
G.f.: (1+x)*(1+4*x-x^2) / (1-x)^4.
(End)
MATHEMATICA
CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=645; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];
on=Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *)
Table[Total[Part[on, Range[1, i]]], {i, 1, Length[on]}] (* Sum at each stage *)
CROSSREFS
Cf. A033996.
Sequence in context: A205796 A081585 A227221 * A101990 A147170 A146823
KEYWORD
nonn,easy
AUTHOR
Robert Price, May 19 2016
STATUS
approved