OFFSET
1,3
COMMENTS
EXAMPLE
Triangle begins:
1;
1, 3;
1, 5;
1, 3, 7;
1, 9;
1, 3, 4, 13;
1, 13;
1, 3, 7, 15;
1, 5, 19;
1, 3, 10, 17;
1, 21;
1, 3, 4, 5, 11, 28;
1, 25;
1, 3, 16, 21;
1, 5, 7, 41;
1, 3, 7, 15, 31;
1, 33;
1, 3, 4, 13, 6, 59;
1, 37;
1, 3, 7, 3, 31, 21;
1, 5, 13, 53;
1, 3, 28, 29;
1, 45;
1, 3, 4, 5, 11, 4, 36, 39;
1, 9, 61;
1, 3, 34, 33;
1, 5, 19, 65;
...
For n = 18 the divisors of 18 are 1, 2, 3, 6, 9, 18, and the difference triangle of the divisors is
1, 2, 3, 6, 9, 18;
1, 1, 3, 3, 9;
0, 2, 0, 6;
2, -2, 6;
-4, 8;
12;
The antidiagonal sums give [1, 3, 4, 13, 6, 59] which is also the 18th row of the irregular triangle.
MATHEMATICA
Table[Map[Total, Table[#[[m - k + 1, k]], {m, Length@ #}, {k, m}], {1}] &@ NestWhileList[Differences, Divisors@ n, Length@ # > 1 &], {n, 27}] (* Michael De Vlieger, Jun 26 2016 *)
PROG
(PARI) row(n) = {my(d = divisors(n)); my(nd = #d); my(m = matrix(#d, #d)); for (j=1, nd, m[1, j] = d[j]; ); for (i=2, nd, for (j=1, nd - i +1, m[i, j] = m[i-1, j+1] - m[i-1, j]; ); ); vector(nd, i, sum(k=0, i-1, m[i-k, k+1])); }
tabf(nn) = for (n=1, nn, print(row(n)); );
lista(nn) = for (n=1, nn, v = row(n); for (j=1, #v, print1(v[j], ", ")); ); \\ Michel Marcus, Jun 25 2016
CROSSREFS
KEYWORD
sign,tabf
AUTHOR
Omar E. Pol, May 20 2016
STATUS
approved