login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A187202 The bottom entry in the difference table of the divisors of n. 25
1, 1, 2, 1, 4, 2, 6, 1, 4, 0, 10, 1, 12, -2, 8, 1, 16, 12, 18, -11, 8, -6, 22, -12, 16, -8, 8, -3, 28, 50, 30, 1, 8, -12, 28, -11, 36, -14, 8, -66, 40, 104, 42, 13, 24, -18, 46, -103, 36, -16, 8, 21, 52, 88, 36, 48, 8, -24, 58, -667, 60, -26, -8, 1, 40, 72 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Note that if n is prime then a(n) = n - 1.

Note that if n is a power of 2 then a(n) = 1.

a(A193671(n)) > 0; a(A187204(n)) = 0; a(A193672(n)) < 0. [Reinhard Zumkeller, Aug 02 2011]

First differs from A187203 at a(14). - Omar E. Pol, May 14 2016

From David A. Corneth, May 20 2016: (Start)

The bottom of the difference table of the divisors of n can be expressed in terms of the divisors of n and use of Pascal's triangle. Suppose a, b, c, d and e are the divisors of n. Then the difference table is as follows (rotated for ease of reading):

a

. . b-a

b . . . . c-2b+a

. . c-b . . . . . d-3c+3b-a

c . . . . d-2c+b . . . . . . e-4d+6c-4b+a

. . d-c . . . . . e-3d+3c-b

d . . . . e-2d+c

. . e-d

e

From here we can see Pascal's triangle occurring. Induction can be used to show that it's the case in general.

(End)

LINKS

T. D. Noe, Table of n, a(n) for n = 1..10000

FORMULA

a(n) = Sum_{k=0..d-1} (-1)^k*binomial(d-1,k)*D[d-k], where D is a sorted list of the d = A000005(n) divisors of n. - N. J. A. Sloane, May 01 2016

a(2^k) = 1.

EXAMPLE

a(18) = 12 because the divisors of 18 are 1, 2, 3, 6, 9, 18, and the difference triangle of the divisors is:

1 . 2 . 3 . 6 . 9 . 18

. 1 . 1 . 3 . 3 . 9

. . 0 . 2 . 0 . 6

. . . 2 .-2 . 6

. . . .-4 . 8

. . . . . 12

with bottom entry a(18) = 12.

Note that A187203(18) = 4.

MAPLE

f:=proc(n) local k, d, lis; lis:=divisors(n); d:=nops(lis);

add( (-1)^k*binomial(d-1, k)*lis[d-k], k=0..d-1); end;

[seq(f(n), n=1..100)]; # N. J. A. Sloane, May 01 2016

MATHEMATICA

Table[d = Divisors[n]; Differences[d, Length[d] - 1][[1]], {n, 100}] (* T. D. Noe, Aug 01 2011 *)

PROG

(PARI) A187202(n)={ for(i=2, #n=divisors(n), n=vecextract(n, "^1")-vecextract(n, "^-1")); n[1]}  \\ M. F. Hasler, Aug 01 2011

(Haskell)

a187202 = head . head . dropWhile ((> 1) . length) . iterate diff . divs

   where divs n = filter ((== 0) . mod n) [1..n]

         diff xs = zipWith (-) (tail xs) xs

-- Reinhard Zumkeller, Aug 02 2011

CROSSREFS

Cf. A000005, A007318, A027750, A187203, A273102.

Sequence in context: A249151 A046791 A187203 * A125131 A003958 A326140

Adjacent sequences:  A187199 A187200 A187201 * A187203 A187204 A187205

KEYWORD

easy,sign

AUTHOR

Omar E. Pol, Aug 01 2011

EXTENSIONS

Edited by N. J. A. Sloane, May 01 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 16 14:38 EDT 2019. Contains 324152 sequences. (Running on oeis4.)