login
A272921
Number of active (ON, black) cells at stage 2^n-1 of the two-dimensional cellular automaton defined by "Rule 555", based on the 5-celled von Neumann neighborhood.
0
1, 5, 29, 149, 669, 2837, 11709, 47669, 192669, 775637, 3115389, 12495989, 50079069, 200585237, 803115069, 3214717109
OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
Conjecture: Rule 571 also generates this sequence. - Lars Blomberg, Jul 10 2016
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
Conjecture: a(n) = 3*4^n - 4*3^(n-2) - 4*2^n + 1, n>1. - Lars Blomberg, Jul 10 2016
Conjectures from Colin Barker, Dec 01 2016: (Start)
a(n) = 10*a(n-1) - 35*a(n-2) + 50*a(n-3) - 24*a(n-4) for n>5.
G.f.: (1 - 5*x + 14*x^2 - 16*x^3 - 32*x^4 + 32*x^5) / ((1 - x)*(1 - 2*x)*(1 - 3*x)*(1 - 4*x)).
(End)
MATHEMATICA
CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=555; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];
on=Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *)
Part[on, 2^Range[0, Log[2, stages]]] (* Extract relevant terms *)
CROSSREFS
Cf. A272920.
Sequence in context: A339957 A027864 A272839 * A198764 A065541 A060926
KEYWORD
nonn,more
AUTHOR
Robert Price, May 10 2016
EXTENSIONS
a(8)-a(15) from Lars Blomberg, Jul 10 2016
STATUS
approved