The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A272919 Numbers of the form 2^(n-1)*(2^(n*m)-1)/(2^n-1), n >= 1, m >= 1. 69
 1, 2, 3, 4, 7, 8, 10, 15, 16, 31, 32, 36, 42, 63, 64, 127, 128, 136, 170, 255, 256, 292, 511, 512, 528, 682, 1023, 1024, 2047, 2048, 2080, 2184, 2340, 2730, 4095, 4096, 8191, 8192, 8256, 10922, 16383, 16384, 16912, 18724, 32767, 32768, 32896, 34952, 43690, 65535, 65536, 131071 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS In other words, numbers whose binary representation consists of one or more repeating blocks with only one 1 in each block. Also, fixed points of the permutations A139706 and A139708. Each a(n) is a term of A064896 multiplied by some power of 2. As such, this sequence must also be a subsequence of A125121. Also the numbers that uniquely index a Haar graph (i.e., 5 and 6 are not in the sequence since H(5) is isomorphic to H(6)). - Eric W. Weisstein, Aug 19 2017 From Gus Wiseman, Apr 04 2020: (Start) The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. This sequence lists all positive integers k such that the k-th composition in standard order is constant. For example, the sequence together with the corresponding constant compositions begins:      0: ()                  136: (4,4)      1: (1)                 170: (2,2,2,2)      2: (2)                 255: (1,1,1,1,1,1,1,1)      3: (1,1)               256: (9)      4: (3)                 292: (3,3,3)      7: (1,1,1)             511: (1,1,1,1,1,1,1,1,1)      8: (4)                 512: (10)     10: (2,2)               528: (5,5)     15: (1,1,1,1)           682: (2,2,2,2,2)     16: (5)                1023: (1,1,1,1,1,1,1,1,1,1)     31: (1,1,1,1,1)        1024: (11)     32: (6)                2047: (1,1,1,1,1,1,1,1,1,1,1)     36: (3,3)              2048: (12)     42: (2,2,2)            2080: (6,6)     63: (1,1,1,1,1,1)      2184: (4,4,4)     64: (7)                2340: (3,3,3,3)    127: (1,1,1,1,1,1,1)    2730: (2,2,2,2,2,2)    128: (8)                4095: (1,1,1,1,1,1,1,1,1,1,1,1) (End) LINKS Ivan Neretin, Table of n, a(n) for n = 1..1000 Eric Weisstein's World of Mathematics, Haar Graph FORMULA From Gus Wiseman, Apr 04 2020: (Start) A333381(a(n)) = A027750(n). - Gus Wiseman, Apr 04 2020 For n > 0, A124767(a(n)) = 1. If n is a power of two, A333628(a(n)) = 0, otherwise = 1. A333627(a(n)) is a power of 2. (End) MAPLE N:= 10^6: # to get all terms <= N R:= select(`<=`, {seq(seq(2^(n-1)*(2^(n*m)-1)/(2^n-1), m = 1 .. ilog2(2*N)/n), n = 1..ilog2(2*N))}, N): sort(convert(R, list)); # Robert Israel, May 10 2016 MATHEMATICA Flatten@Table[d = Reverse@Divisors[n]; 2^(d - 1)*(2^n - 1)/(2^d - 1), {n, 17}] CROSSREFS Cf. A064896, A139708. Cf. A137706 (smallest number indexing a new Haar graph). Compositions in standard order are A066099. Strict compositions are ranked by A233564. Cf. A000120, A027750, A070939, A098504, A124767, A164894, A228351, A238279. Sequence in context: A240073 A332579 A333778 * A285506 A188190 A026808 Adjacent sequences:  A272916 A272917 A272918 * A272920 A272921 A272922 KEYWORD nonn AUTHOR Ivan Neretin, May 10 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 2 11:20 EDT 2020. Contains 334771 sequences. (Running on oeis4.)