login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272832
Number of active (ON, black) cells at stage 2^n-1 of the two-dimensional cellular automaton defined by "Rule 694", based on the 5-celled von Neumann neighborhood.
0
1, 5, 21, 85, 377, 1633, 6929, 28945, 119537, 489553, 1992689, 8074705, 32611697, 131387473, 528376049, 2121990865
OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
Conjecture: a(n) = 2*4^n - 16*3^(n-2) + 2^(n-1) + 1, n>2. - Lars Blomberg, Jul 19 2016
MATHEMATICA
CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=694; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];
on=Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *)
Part[on, 2^Range[0, Log[2, stages]]] (* Extract relevant terms *)
CROSSREFS
Cf. A273410.
Sequence in context: A002450 A187063 A026855 * A273489 A097113 A368345
KEYWORD
nonn,more
AUTHOR
Robert Price, May 21 2016
EXTENSIONS
a(8)-a(15) from Lars Blomberg, Jul 19 2016
STATUS
approved