login
A368345
a(n) = Sum_{k=0..n} 4^(n-k) * floor(k/3).
1
0, 0, 0, 1, 5, 21, 86, 346, 1386, 5547, 22191, 88767, 355072, 1420292, 5681172, 22724693, 90898777, 363595113, 1454380458, 5817521838, 23270087358, 93080349439, 372321397763, 1489285591059, 5957142364244, 23828569456984, 95314277827944, 381257111311785
OFFSET
0,5
FORMULA
a(n) = a(n-3) + (4^(n-2) - 1)/3.
a(n) = 1/3 * Sum_{k=0..n} floor(4^k/21) = Sum_{k=0..n} floor(4^k/63).
a(n) = 5*a(n-1) - 4*a(n-2) + a(n-3) - 5*a(n-4) + 4*a(n-5).
G.f.: x^3/((1-x) * (1-4*x) * (1-x^3)).
a(n) = (floor(4^(n+1)/63) - floor((n+1)/3))/3.
PROG
(PARI) a(n, m=3, k=4) = (k^(n+1)\(k^m-1)-(n+1)\m)/(k-1);
CROSSREFS
Partial sums of A033140.
Column k=4 of A368343.
Cf. A097138.
Sequence in context: A272832 A273489 A097113 * A265939 A012814 A039919
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Dec 22 2023
STATUS
approved