login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A271750 a(1) = 1; a(n+1) = smallest Fibonacci number > a(n) with leading digit equal to the final digit of a(n). 1
1, 13, 34, 4181, 10946, 63245986, 6557470319842, 27777890035288, 806515533049393, 3416454622906707, 7540113804746346429, 927372692193078999176, 6356306993006846248183, 3311648143516982017180081, 14028366653498915298923761, 155576970220531065681649693, 30960598847965113057878492344 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Look at this array:

...1

...13

....34

.....4181

........10946

............63245986

...................6557470319842

.

.

.

................................34507973060837282187130139035400899082304280

Since no positive Fibonacci number begins with 0, the sequence ends here.

- N. J. A. Sloane, May 02 2016

LINKS

Chai Wah Wu, Table of n, a(n) for n = 1..25

EXAMPLE

Since a(1) = 1, a(2) must start with 1 and so a(2) = 13;

since a(2) = 13, a(3) must start with 3, and so a(3) = 34;

since a(3) = 34, a(4) must start with 4 and the smallest Fibonacci number greater than 34 and beginning with 4 is 4181; ...

MATHEMATICA

F = Fibonacci; L={2}; While[(d = Mod[F[k = Last@L], 10]) > 0, While[ IntegerDigits[ F[++k]][[1]] != d]; AppendTo[L, k]]; F@L (* Giovanni Resta, May 02 2016 *)

CROSSREFS

Cf. A061448.

Sequence in context: A214729 A280322 A262851 * A082214 A115161 A063300

Adjacent sequences: A271747 A271748 A271749 * A271751 A271752 A271753

KEYWORD

nonn,base,fini,full

AUTHOR

José de Jesús Camacho Medina, Apr 13 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 3 02:45 EST 2023. Contains 360024 sequences. (Running on oeis4.)