login
A280322
Sum of the squares of the larger parts of the partitions of 2n into two squarefree parts.
3
1, 13, 34, 110, 74, 306, 339, 811, 804, 1340, 1437, 2469, 1725, 2840, 2245, 4953, 4511, 8663, 5975, 11191, 8568, 15588, 9696, 18380, 11064, 20397, 17314, 23105, 22379, 31134, 25387, 35486, 27603, 48487, 36645, 65610, 44926, 66801, 45749, 77825, 49037, 93390, 59942
OFFSET
1,2
FORMULA
a(n) = Sum_{i=1..n} (2n-i)^2 * mu(i)^2 * mu(2n-i)^2, where mu is the Möbius function (A008683).
a(n) = A280316(n) - A280320(n).
MAPLE
with(numtheory): A280322:=n->add((2*n-i)^2*mobius(i)^2*mobius(2*n-i)^2, i=1..n): seq(A280322(n), n=1..100);
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Dec 31 2016
STATUS
approved