login
A271710
Table T(n,k) = 2^n XOR 2^k read by antidiagonals, where XOR is the binary exclusive or operator.
2
0, 3, 3, 5, 0, 5, 9, 6, 6, 9, 17, 10, 0, 10, 17, 33, 18, 12, 12, 18, 33, 65, 34, 20, 0, 20, 34, 65, 129, 66, 36, 24, 24, 36, 66, 129, 257, 130, 68, 40, 0, 40, 68, 130, 257, 513, 258, 132, 72, 48, 48, 72, 132, 258, 513, 1025, 514, 260, 136, 80, 0, 80, 136, 260
OFFSET
0,2
COMMENTS
n > 1 is in this sequence if and only if it is in A018900.
FORMULA
T(n, k) = 0 if n = k.
T(n, k) = A271709(n, k) if n != k.
EXAMPLE
a(0) = T(0, 0) = 2^0 XOR 2^0 = 0.
a(1) = T(1, 0) = 2^1 XOR 2^0 = 3.
0, 3, 5, 9, 17, 33, 65, 129, 257, 513,1025,
3, 0, 6, 10, 18, 34, 66, 130, 258, 514,1026,
5, 6, 0, 12, 20, 36, 68, 132, 260, 516,1028,
9, 10, 12, 0, 24, 40, 72, 136, 264, 520,1032,
17, 18, 20, 24, 0, 48, 80, 144, 272, 528,1040,
33, 34, 36, 40, 48, 0, 96, 160, 288, 544,1056,
65, 66, 68, 72, 80, 96, 0, 192, 320, 576,1088,
129, 130, 132, 136, 144, 160, 192, 0, 384, 640,1152,
257, 258, 260, 264, 272, 288, 320, 384, 0, 768,1280,
513, 514, 516, 520, 528, 544, 576, 640, 768, 0,1536,
1025,1026,1028,1032,1040,1056,1088,1152,1280,1536, 0,
MAPLE
read("transforms") ;
A271710 := proc(n, k)
XORnos(2^n, 2^k) ;
end proc: # R. J. Mathar, Apr 15 2016
MATHEMATICA
Table[BitXor[2^(n - k), 2^k], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Apr 12 2016 *)
PROG
(PARI) T(n, k) = bitxor(2^n, 2^k);
matrix(10, 10, n, k, n--; k--; T(n, k)) \\ Michel Marcus, Apr 12 2016
CROSSREFS
Cf. A271709.
Sequence in context: A011445 A197137 A133456 * A371659 A246005 A103786
KEYWORD
nonn,tabl,easy
AUTHOR
Peter Kagey, Apr 12 2016
STATUS
approved