login
A271659
Primes p such that phi(phi(p-1)+1) = phi(phi(p-2)+1).
5
3, 5, 17, 53, 83, 257, 701, 977, 1877, 2027, 2837, 3257, 5189, 6521, 9257, 11717, 13367, 13457, 18947, 22937, 27611, 56813, 65537, 81509, 137363, 157037, 277643, 307397, 491537, 589409, 728417, 928787, 983777, 1143953, 1206581, 1397933, 1659587, 2822717
OFFSET
1,1
COMMENTS
The first 5 known Fermat primes from A019434 are in the sequence.
EXAMPLE
53 is a term because: phi(phi(53-1)+1) = phi(phi(52)+1) = phi(24+1) = phi(25) = 20 = phi(phi(53-2)+1) = phi(phi(51)+1) = phi(32+1) = phi(33).
MATHEMATICA
Select[Prime@ Range[10^5], EulerPhi[EulerPhi[# - 1] + 1] == EulerPhi[EulerPhi[# - 2] + 1] &] (* Michael De Vlieger, Apr 12 2016 *)
PROG
(Magma) [n: n in [3..10^7] | IsPrime(n) and EulerPhi(EulerPhi(n-2)+1) eq EulerPhi(EulerPhi(n-1) +1)]
(PARI) lista(nn) = forprime(p=3, nn, if(eulerphi(eulerphi(p-1)+1) == eulerphi(eulerphi(p-2)+1), print1(p, ", "))); \\ Altug Alkan, Apr 12 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Apr 12 2016
STATUS
approved